Evolutionary Intelligent System for input parameter optimisation in environmental modelling: A case study in forest fire forecasting

作者: Kerstin Wendt , Ana Cortes , Tomas Margalef

DOI: 10.1109/CEC.2010.5586307

关键词: Artificial intelligenceEvolutionary computationMathematical optimizationFire spreadCalibration (statistics)Genetic algorithmComputer scienceTask (project management)Cluster analysisEnvironmental modellingMachine learning

摘要: The need for input parameter optimisation in environmental modelling is a long-known and very time-consuming task. However, to avoid tragedy, disaster propagation predictions have satisfy hard real-time constraints. Especially small control centres with limited computing resources require fast efficient calibration methods deliver reliable time. combination of clustering method together Genetic Algorithm used as technique forest fire spread prediction. We formalise demonstrate the potential resulting Evolutionary Intelligent System's architecture solve complex problem on restricted simulation conditions.

参考文章(26)
Engineering Evolutionary Intelligent Systems Springer Publishing Company, Incorporated. ,(2008) , 10.1007/978-3-540-75396-4
Gregory J. Pelletier, Steven C. Chapra, Hua Tao, Short communication: QUAL2Kw - A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration Environmental Modelling and Software. ,vol. 21, pp. 419- 425 ,(2006) , 10.1016/J.ENVSOFT.2005.07.002
Ajith Abraham, Crina Grosan, None, Engineering Evolutionary Intelligent Systems: Methodologies, Architectures and Reviews Engineering Evolutionary Intelligent Systems. pp. 1- 22 ,(2008) , 10.1007/978-3-540-75396-4_1
Mónica Denham, Ana Cortés, Tomàs Margalef, Emilio Luque, Applying a Dynamic Data Driven Genetic Algorithm to Improve Forest Fire Spread Prediction international conference on computational science. ,vol. 5103, pp. 36- 45 ,(2008) , 10.1007/978-3-540-69389-5_6
Federico Divina, Elena Marchiori, Knowledge-Based Evolutionary Search for Inductive Concept Learning Knowledge Incorporation in Evolutionary Computation. pp. 237- 253 ,(2005) , 10.1007/978-3-540-44511-1_12
AM Berry, PW Vamplew, PoD Can Mutate: A Simple Dynamic Directed Mutation Approach for Genetic Algorithms international conference on artificial intelligence. ,vol. 1, pp. 200- 205 ,(2004)
Yongjie Li, Dezhong Yao, Jiancheng Zheng, Jonathan Yao, A modified genetic algorithm for the beam angle optimization problem in intensity-modulated radiotherapy planning EA'05 Proceedings of the 7th international conference on Artificial Evolution. pp. 97- 106 ,(2005) , 10.1007/11740698_9
Rasmus K. Ursem, Diversity-Guided Evolutionary Algorithms parallel problem solving from nature. pp. 462- 474 ,(2002) , 10.1007/3-540-45712-7_45