Knowledge-Based Evolutionary Search for Inductive Concept Learning

作者: Federico Divina , Elena Marchiori

DOI: 10.1007/978-3-540-44511-1_12

关键词:

摘要: This chapter provides a short overview of GA-based system for inductive concept learning (in fragment first-order logic) . The described exploits problem—specific knowledge by means ad-hoc selection, mutation operators, and optimization applied to the single individuals. We focus on experimental analysis selection operators incorporating problem knowledge.

参考文章(38)
Jukka Hekanaho, Background Knowledge in GA-based Concept Learning international conference on machine learning. pp. 234- 242 ,(1996)
Raúl Giráldez, Jesús S. Aguilar-Ruiz, José C. Riquelme, Natural Coding: A More Efficient Representation for Evolutionary Learning Genetic and Evolutionary Computation — GECCO 2003. pp. 979- 990 ,(2003) , 10.1007/3-540-45105-6_109
Elena Marchiori, Federico Divina, Evolutionary concept learning genetic and evolutionary computation conference. pp. 343- 350 ,(2002)
Claire J. Kennedy, Christophe Giraud-Carrier, A depth controlling strategy for Strongly Typed Evolutionary Programming genetic and evolutionary computation conference. pp. 879- 885 ,(1999)
Sašo Džeroskil, Nico Jacobs, Martin Molina, Carlos Moure, ILP Experiments in Detecting Traffic Problems european conference on machine learning. ,vol. 1398, pp. 61- 66 ,(1998) , 10.1007/BFB0026673
Jukka Hekanaho, DOGMA: A GA-Based Relational Learner inductive logic programming. pp. 205- 214 ,(1998) , 10.1007/BFB0027324
Lorenza Saitta, Cosimo Anglano, Giuseppe Lo Bello, Attilio Giordana, An Experimental Evaluation of Coevolutive Concept Learning international conference on machine learning. pp. 19- 27 ,(1998)
Jesus S. Aguilar-Ruiz, José C. Riquelme, Carmelo Del Valle, Improving the evolutionary coding for machine learning tasks european conference on artificial intelligence. pp. 173- 177 ,(2002)
Federico Divina, Maarten Keijzer, Elena Marchiori, Non-universal suffrage selection operators favor population diversity in genetic algorithms genetic and evolutionary computation conference. pp. 1574- 1575 ,(2003) , 10.1007/3-540-45110-2_31