Design of Fuzzy Control Systems with Different PSO Variants

作者: Resffa Fierro , Oscar Castillo

DOI: 10.1007/978-3-642-33021-6_6

关键词: ClampingBenchmark (computing)MetaheuristicMulti-swarm optimizationSwarm behaviourMathematical optimizationInertiaInverted pendulumFuzzy control systemControl theoryComputer science

摘要: This paper describes the metaheuristic of Optimization by Swarm Particles (PSO-Particle Optimization) and its variants (Clamping speed, inertia constriction coefficient) as an optimization strategy to design membership functions Benchmark Control Cases (Tank water Inverted Pendulum) Each have their own advantages within algorithm because they allow exploration exploitation in different ways this allows us find optimum.

参考文章(7)
B. Birge, PSOt - a particle swarm optimization toolbox for use with Matlab ieee swarm intelligence symposium. pp. 182- 186 ,(2003) , 10.1109/SIS.2003.1202265
James Kennedy, The particle swarm: social adaptation of knowledge ieee international conference on evolutionary computation. pp. 303- 308 ,(1997) , 10.1109/ICEC.1997.592326
Yamille Del Valle, Ganesh Kumar Venayagamoorthy, Salman Mohagheghi, Jean-Carlos Hernandez, Ronald G Harley, None, Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems IEEE Transactions on Evolutionary Computation. ,vol. 12, pp. 171- 195 ,(2008) , 10.1109/TEVC.2007.896686
Jirí Benes, On neural networks. Kybernetika. ,vol. 26, pp. 232- 247 ,(1990)
James Kennedy, Particle Swarm Optimization. Encyclopedia of Machine Learning. pp. 760- 766 ,(2010)
Riccardo Poli, James Kennedy, Tim Blackwell, Particle swarm optimization Swarm Intelligence. ,vol. 1, pp. 33- 57 ,(2007) , 10.1007/S11721-007-0002-0