A NORMAL FORM FOR ADMISSIBLE CHARACTERS IN THE SENSE OF LYNCH

作者: Karin Baur

DOI: 10.1090/S1088-4165-05-00265-7

关键词: Lie conformal algebraCartan subalgebraAdjoint representationMathematicsPure mathematicsSemisimple algebraReal formDiscrete mathematicsAdjoint representation of a Lie algebraGraded Lie algebraKilling form

摘要: Parabolic subalgebras p of semisimple Lie algebras define a Z-grading the algebra. If there exists nilpotent element in first graded part g on which adjoint group acts with dense orbit, parabolic subalgebra is said to be nice. The corresponding also called admissible. Nice simple have been classified. In case Borel Richardson g1 exactly one that involves all root spaces. It however difficult write down such elements for general subalgebras. this paper we give an explicit construction admissible uses as few spaces possible.

参考文章(8)
Simon Goodwin, Gerhard Röhrle, Prehomogeneous spaces for parabolic group actions in classical groups Journal of Algebra. ,vol. 276, pp. 383- 398 ,(2004) , 10.1016/J.JALGEBRA.2003.11.005
William M. McGovern, David H. Collingwood, Nilpotent orbits in semisimple Lie algebras Van Nostrand Reinhold. ,(1993)
Bertram Kostant, On Whittaker vectors and representation theory Inventiones Mathematicae. ,vol. 48, pp. 101- 184 ,(1978) , 10.1007/BF01390249
Karin Baur, Nolan Wallach, NICE PARABOLIC SUBALGEBRAS OF REDUCTIVE LIE ALGEBRAS Representation Theory of The American Mathematical Society. ,vol. 9, pp. 1- 29 ,(2005) , 10.1090/S1088-4165-05-00262-1
Thomas Brüstle, Lutz Hille, Claus Michael Ringel, Gerhard Röhrle, None, The Δ-Filtered Modules Without Self-Extensions for the Auslander Algebra of k[ T ]/〈 T n 〉 Algebras and Representation Theory. ,vol. 2, pp. 295- 312 ,(1999) , 10.1023/A:1009999006899
Nolan R. Wallach, Roe Goodman, Representations and invariants of the classical groups ,(1998)
Thomas Emile Lynch, Generalized Whittaker vectors and representation theory. Massachusetts Institute of Technology. ,(1979)
D. S. Johnston, R. W. Richardson, Conjugacy Classes in Parabolic Subgroups of Semisimple Algebraic Groups, II Bulletin of the London Mathematical Society. ,vol. 9, pp. 245- 250 ,(1977) , 10.1112/BLMS/9.3.245