On the nilradical of a parabolic subgroup

作者: Karin Baur

DOI: 10.1007/978-1-4939-1590-3_2

关键词:

摘要: We present various approaches to understanding the structure of nilradical parabolic subgroups in type A. In particular, we consider complement open dense orbit and describe its irreducible components.

参考文章(21)
Karin Baur, Nolan Wallach, NICE PARABOLIC SUBALGEBRAS OF REDUCTIVE LIE ALGEBRAS Representation Theory of The American Mathematical Society. ,vol. 9, pp. 1- 29 ,(2005) , 10.1090/S1088-4165-05-00262-1
Thomas Brüstle, Lutz Hille, Claus Michael Ringel, Gerhard Röhrle, None, The Δ-Filtered Modules Without Self-Extensions for the Auslander Algebra of k[ T ]/〈 T n 〉 Algebras and Representation Theory. ,vol. 2, pp. 295- 312 ,(1999) , 10.1023/A:1009999006899
William M. McGovern, The Adjoint Representation and the Adjoint Action Springer, Berlin, Heidelberg. pp. 159- 238 ,(2002) , 10.1007/978-3-662-05071-2_3
Thomas Emile Lynch, Generalized Whittaker vectors and representation theory. Massachusetts Institute of Technology. ,(1979)
Karin Baur, Karin Erdmann, Alison Parker, D-filtered modules and nilpotent orbits of a parabolic subgroup in On Journal of Pure and Applied Algebra. ,vol. 215, pp. 885- 901 ,(2011) , 10.1016/J.JPAA.2010.06.032
Nolan Wallach, Karin Baur, A class of gradings of simple Lie algebras arXiv: Representation Theory. ,(2006)
Nolan R. Wallach, Holomorphic continuation of generalized Jacquet integrals for degenerate principal series Representation Theory of The American Mathematical Society. ,vol. 10, pp. 380- 398 ,(2006) , 10.1090/S1088-4165-06-00231-7
Karin Baur, A NORMAL FORM FOR ADMISSIBLE CHARACTERS IN THE SENSE OF LYNCH Representation Theory of The American Mathematical Society. ,vol. 9, pp. 30- 45 ,(2005) , 10.1090/S1088-4165-05-00265-7