A two phase stefan problem: regularity of the free boundary

作者: J. R. Cannon , M. Primicerio

DOI: 10.1007/BF02415069

关键词: SlabMathematicsFunction (mathematics)Free boundary problemStefan problemBoundary (topology)Mathematical analysisAbscissaPlane (geometry)Phase (waves)

摘要: We proved the infinite differentability of function x=s(t) giving, for all t, abscissa interface plane a two phase Stefan problem in slab.

参考文章(11)
Avner Friedman, ONE DIMENSIONAL STEFAN PROBLEMS WITH NONMONOTONE FREE BOUNDARY Transactions of the American Mathematical Society. ,vol. 133, pp. 89- 114 ,(1968) , 10.1090/S0002-9947-1968-0227626-9
J. R. Cannon, A priori estimate for continuation of the solution of the heat equation in the space variable Annali di Matematica Pura ed Applicata. ,vol. 65, pp. 377- 387 ,(1964) , 10.1007/BF02418234
John R. Cannon, Mario Primicerio, A two phase Stefan problem with flux boundary conditions Annali di Matematica Pura ed Applicata. ,vol. 88, pp. 193- 205 ,(1971) , 10.1007/BF02415067
John R. Cannon, Mario Primicerio, A two phase Stefan problem with temperature boundary conditions Annali di Matematica Pura ed Applicata. ,vol. 88, pp. 177- 191 ,(1971) , 10.1007/BF02415066
Demore Quilghini, Una analisi Fisico-Matematica del processo del cambiamento di fase Annali di Matematica Pura ed Applicata. ,vol. 67, pp. 33- 74 ,(1965) , 10.1007/BF02410804
Avner Friedman, The Stefan problem in several space variables Transactions of the American Mathematical Society. ,vol. 133, pp. 51- 87 ,(1968) , 10.1090/S0002-9947-1968-0227625-7
Avner Friedman, Correction to: “The Stefan problem in several space variables” Transactions of the American Mathematical Society. ,vol. 142, pp. 557- ,(1969) , 10.1090/S0002-9947-1969-0245983-5
J.R Cannon, C.Denson Hill, On the infinite differentiability of the free boundary in a Stefan problem Journal of Mathematical Analysis and Applications. ,vol. 22, pp. 385- 397 ,(1968) , 10.1016/0022-247X(68)90180-7
J. Cannon, Jim Douglas, Jr., C. Hill, A Multi-Boundary Stefan Problem and the Disappearance of Phases Indiana University Mathematics Journal. ,vol. 17, pp. 21- 33 ,(1967) , 10.1512/IUMJ.1968.17.17002
J. Cannon, C. Hill, Existence, Uniqueness, Stability, and Monotone Dependence in a Stefan Problem for the Heat Equation Indiana University Mathematics Journal. ,vol. 17, pp. 1- 19 ,(1967) , 10.1512/IUMJ.1968.17.17001