On the infinite differentiability of the free boundary in a Stefan problem

作者: J.R Cannon , C.Denson Hill

DOI: 10.1016/0022-247X(68)90180-7

关键词:

摘要: Abstract : For a Stefan problem for the heat equation, estimates derivatives of free boundary are obtained in form recursion relations which show that belongs to specific differentiability class. (Author)

参考文章(8)
H. Lewy, On the Boundary Behavior of Minimal Surfaces. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 37, pp. 103- 110 ,(1951) , 10.1073/PNAS.37.2.103
J. R. Cannon, A priori estimate for continuation of the solution of the heat equation in the space variable Annali di Matematica Pura ed Applicata. ,vol. 65, pp. 377- 387 ,(1964) , 10.1007/BF02418234
Hans Lewy, A note on harmonic functions and a hydrodynamical application Proceedings of the American Mathematical Society. ,vol. 3, pp. 111- 113 ,(1952) , 10.1090/S0002-9939-1952-0049399-9
C. Denson Hill, Parabolic equations in one space variable and the non-characteristic cauchy problem Communications on Pure and Applied Mathematics. ,vol. 20, pp. 619- 633 ,(1967) , 10.1002/CPA.3160200309
J. Cannon, C. Hill, Existence, Uniqueness, Stability, and Monotone Dependence in a Stefan Problem for the Heat Equation Indiana University Mathematics Journal. ,vol. 17, pp. 1- 19 ,(1967) , 10.1512/IUMJ.1968.17.17001
Maurice Gevrey, Sur les équations aux dérivées partielles du type parabolique (suite) Journal de Mathématiques Pures et Appliquées. ,vol. 10, pp. 105- 148 ,(1913)
Paul Garabedian, Partial Differential Equations ,(1964)