Systems, device, and methods for parameter optimization

作者: Tony Jebara

DOI:

关键词: Bounding overwatchSet (abstract data type)Mathematical optimizationAlgorithmGroup (mathematics)MathematicsPartition function (quantum field theory)Variable (mathematics)

摘要: A computerized method for optimizing parameters is described. system can initialize a group of to respective values within set allowable models and bound partition function across number variable pairs generate plurality bounds. The also determine new the that minimize sum optimize by iteratively performing bounding, determining setting. stop when termination condition reached.

参考文章(41)
John Winn, Christopher Bishop, David J. Spiegelhalter, Variational inference engine for probabilistic graphical models ,(1999)
Tommi S Jaakkola, Michael I Jordan, None, Bayesian parameter estimation via variational methods Statistics and Computing. ,vol. 10, pp. 25- 37 ,(2000) , 10.1023/A:1008932416310
Asela J. Gunawardana, Alejandro Acero, John C. Platt, Milind V. Mahajan, Updating hidden conditional random field model parameters after processing individual training samples ,(2005)
David Callele, Shawn Rusaw, Trent Lorne McConaghy, Kristopher Breen, Model-building optimization ,(2008)
Markus Svensen, Martin Szummer, Christopher Bishop, Tonatiuh Centeno, Yuan Qi, Bayesian conditional random fields international conference on artificial intelligence and statistics. pp. 269- 276 ,(2004)
Ji-Rong Wen, Wei-Ying Ma, Zaiqing Nie, Jun Zhu, Hierarchical conditional random fields for web extraction ,(2006)
Michael Campos, Juergen Branke, Method and system for implementing evolutionary algorithms ,(2002)
Amir Globerson, Terry Y. Koo, Xavier Carreras, Michael Collins, Exponentiated gradient algorithms for log-linear structured prediction international conference on machine learning. pp. 305- 312 ,(2007) , 10.1145/1273496.1273535
Galen Andrew, Jianfeng Gao, Scalable training of L1-regularized log-linear models international conference on machine learning. pp. 33- 40 ,(2007) , 10.1145/1273496.1273501