作者: Torre Pedraza , Azahara de la
DOI:
关键词: Scalar curvature 、 Ode 、 Einstein manifold 、 Anti-de Sitter space 、 Yamabe problem 、 Hyperbolic manifold 、 Mathematical analysis 、 Conformal geometry 、 Yamabe flow 、 Mathematics 、 Pure mathematics
摘要: We construct some ODE solutins for the fractional Yamabe problem in conformal geometry. The curvature, which is a generalization of usual scalar defined from Laplacian, non-local operator construced on infinity conformally compact Einstein manifold. On one hand, we consider hyperbolic manifold $\mathbb S^1(L)\times \mathbb R^3$ and study nonuniqueness solutions problem. On other look at existence radial Euclidean space with an isolated singularity origin. Both equations are order new tools need to be developed.. La geometria conforme estudia les transformacions que preserven angles. Aixo fa nocions de curvatura mes importants es puguin descriure mitjancant equacions en derivades parcials elliptiques. El projecte consisteix aprofondier aquesta relacio, fent servir eines EDP per resoldre problemes geometrics