Some ODE solutions for the fractional Yamabe problem

作者: Torre Pedraza , Azahara de la

DOI:

关键词: Scalar curvatureOdeEinstein manifoldAnti-de Sitter spaceYamabe problemHyperbolic manifoldMathematical analysisConformal geometryYamabe flowMathematicsPure mathematics

摘要: We construct some ODE solutins for the fractional Yamabe problem in conformal geometry. The curvature, which is a generalization of usual scalar defined from Laplacian, non-local operator construced on infinity conformally compact Einstein manifold. On one hand, we consider hyperbolic manifold $\mathbb S^1(L)\times \mathbb R^3$ and study nonuniqueness solutions problem. On other look at existence radial Euclidean space with an isolated singularity origin. Both equations are order new tools need to be developed.. La geometria conforme estudia les transformacions que preserven angles. Aixo fa nocions de curvatura mes importants es puguin descriure mitjancant equacions en derivades parcials elliptiques. El projecte consisteix aprofondier aquesta relacio, fent servir eines EDP per resoldre problemes geometrics

参考文章(29)
Morio Obata, The conjectures on conformal transformations of Riemannian manifolds Journal of Differential Geometry. ,vol. 6, pp. 247- 258 ,(1971) , 10.4310/JDG/1214430407
Rafe Mazzeo, The Hodge cohomology of a conformally compact metric Journal of Differential Geometry. ,vol. 28, pp. 309- 339 ,(1988) , 10.4310/JDG/1214442281
Alan F. Beardon, The Geometry of Discrete Groups ,(1983)
Enrico Valdinoci, From the long jump random walk to the fractional Laplacian SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada. pp. 33- 44 ,(2009)
José F. Escobar, The Yamabe problem on manifolds with boundary Journal of Differential Geometry. ,vol. 35, pp. 21- 84 ,(1992) , 10.4310/JDG/1214447805
Rupert L. Frank, Enno Lenzmann, Luis Silvestre, Uniqueness of Radial Solutions for the Fractional Laplacian Communications on Pure and Applied Mathematics. ,vol. 69, pp. 1671- 1726 ,(2016) , 10.1002/CPA.21591
Michael T. Anderson, L^2 curvature and volume renormalization of AHE metrics on 4-manifolds Mathematical Research Letters. ,vol. 8, pp. 171- 188 ,(2001) , 10.4310/MRL.2001.V8.N2.A6
Rafe R Mazzeo, Richard B Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature Journal of Functional Analysis. ,vol. 75, pp. 260- 310 ,(1987) , 10.1016/0022-1236(87)90097-8
Rafe Mazzeo, Unique Continuation at Infinity and Embedded Eigenvalues for Asymptotically Hyperbolic Manifolds American Journal of Mathematics. ,vol. 113, pp. 25- ,(1991) , 10.2307/2374820
Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities Annals of Mathematics. ,vol. 118, pp. 529- 554 ,(1983) , 10.1007/978-3-642-55925-9_43