Unique Continuation at Infinity and Embedded Eigenvalues for Asymptotically Hyperbolic Manifolds

作者: Rafe Mazzeo

DOI: 10.2307/2374820

关键词:

摘要: … elliptic equations which degenerate along a hypersurface, much as the Laplacian on hyperbolic space … forms, on geometrically finite hyperbolic manifolds of infinite volume and on the …

参考文章(9)
Rafe Roys Mazzeo, Hodge cohomology of negatively curved manifolds Massachusetts Institute of Technology. ,(1986)
Lars Hörmander, The analysis of linear partial differential operators Springer-Verlag. ,(1990)
N. Aronszajn, A. Krzywicki, J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds Arkiv för Matematik. ,vol. 4, pp. 417- 453 ,(1962) , 10.1007/BF02591624
Harold Donnelly, Eigenvalues embedded in the continuum for negatively curved manifolds. The Michigan Mathematical Journal. ,vol. 28, pp. 53- 62 ,(1981) , 10.1307/MMJ/1029002457
Peter D. Lax, Ralph S. Phillips, Scattering Theory for Automorphic Functions ,(1967)
Harold Donnelly, The differential form spectrum of hyperbolic space Manuscripta Mathematica. ,vol. 33, pp. 365- 385 ,(1981) , 10.1007/BF01798234
Nicola Garofalo, Fang-Hua Lin, Unique continuation for elliptic operators: A geometric‐variational approach Communications on Pure and Applied Mathematics. ,vol. 40, pp. 347- 366 ,(1987) , 10.1002/CPA.3160400305
Christopher D. Sogge, Strong Uniqueness Theorems for Second Order Elliptic Differential Equations American Journal of Mathematics. ,vol. 112, pp. 943- ,(1990) , 10.2307/2374732