A hybrid feature subset selection by combining filters and genetic algorithm

作者: Suriender Singh , S. Selvakumar

DOI: 10.1109/CCAA.2015.7148389

关键词: Decision treeOptimization problemPopulationDimensionality reductionData classificationFeature selectionPattern recognitionComputer scienceData miningArtificial intelligenceLinear classifierGenetic algorithm

摘要: The presence of a large number irrelevant features degrades the classifier accuracy, reduces understanding data, and increases overall time needed for training classification. Hence, Feature selection is critical step in machine learning process. role feature to select subset size ‘d’ (d

参考文章(15)
Marko Robnik-Šikonja, Igor Kononenko, Theoretical and Empirical Analysis of ReliefF and RReliefF Machine Learning. ,vol. 53, pp. 23- 69 ,(2003) , 10.1023/A:1025667309714
David E. Goldberg, John H. Holland, Genetic Algorithms and Machine Learning Machine Learning. ,vol. 3, pp. 95- 99 ,(1988) , 10.1023/A:1022602019183
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
Stuart W. Card, Information distance based fitness and diversity metrics genetic and evolutionary computation conference. pp. 1851- 1854 ,(2010) , 10.1145/1830761.1830815
M. Srinivas, L.M. Patnaik, Adaptive probabilities of crossover and mutation in genetic algorithms systems man and cybernetics. ,vol. 24, pp. 656- 667 ,(1994) , 10.1109/21.286385
Cheng-Lung Huang, Chieh-Jen Wang, None, A GA-based feature selection and parameters optimizationfor support vector machines Expert Systems With Applications. ,vol. 31, pp. 231- 240 ,(2006) , 10.1016/J.ESWA.2005.09.024
Dong Ling Tong, Amanda C. Schierz, Hybrid genetic algorithm-neural network: Feature extraction for unpreprocessed microarray data Artificial Intelligence in Medicine. ,vol. 53, pp. 47- 56 ,(2011) , 10.1016/J.ARTMED.2011.06.008
Ren Diao, Qiang Shen, Feature Selection With Harmony Search systems man and cybernetics. ,vol. 42, pp. 1509- 1523 ,(2012) , 10.1109/TSMCB.2012.2193613