High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition

作者: Czang-Ho Lee , Andrei Sazonov , Arokia Nathan

DOI: 10.1063/1.1942641

关键词: SiliconSubthreshold slopeSilaneThreshold voltageNanocrystalline siliconThin-film transistorNanotechnologyAnalytical chemistryPlasma-enhanced chemical vapor depositionMaterials scienceChemical vapor depositionPhysics and Astronomy (miscellaneous)

摘要: Hydrogenated nanocrystalline silicon (nc-Si:H) films were deposited by using 13.56MHz plasma-enhanced chemical vapor deposition at 260°C means of a silane (SiH4) plasma heavily diluted with hydrogen (H2). The high-quality nc-Si:H film showed an oxygen concentration (CO) ∼1.5×1017at.∕cm3 and dark conductivity (σd) ∼10−6S∕cm, while the Raman crystalline volume fraction (Xc) was over 80%. Top-gate thin-film transistors employing optimized ∼100nm channel layer exhibited field-effect mobility (μFE) ∼150cm2∕Vs, threshold voltage (VT) ∼2V, subthreshold slope (S) ∼0.25V∕dec, ON∕OFF current ratio ∼106.

参考文章(17)
Hellmut Fritzsche, Amorphous silicon and related materials World Scientific. ,(1989)
Jin Jang, Jae Young Oh, Sung Ki Kim, Young Jin Choi, Soo Young Yoon, Chae Ok Kim, Electric-field-enhanced crystallization of amorphous silicon Nature. ,vol. 395, pp. 481- 483 ,(1998) , 10.1038/26711
R. A. Street, Hydrogenated amorphous silicon Hydrogenated Amorphous Silicon. pp. 431- ,(1991) , 10.1017/CBO9780511525247
I-Chun Cheng, Sigurd Wagner, Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150°C Applied Physics Letters. ,vol. 80, pp. 440- 442 ,(2002) , 10.1063/1.1435798
O Vetterl, F Finger, R Carius, P Hapke, L Houben, O Kluth, A Lambertz, A Mück, B Rech, H Wagner, Intrinsic microcrystalline silicon: A new material for photovoltaics Solar Energy Materials and Solar Cells. ,vol. 62, pp. 97- 108 ,(2000) , 10.1016/S0927-0248(99)00140-3
Saravanapriyan Sriraman, Sumit Agarwal, Eray S. Aydil, Dimitrios Maroudas, Mechanism of hydrogen-induced crystallization of amorphous silicon Nature. ,vol. 418, pp. 62- 65 ,(2002) , 10.1038/NATURE00866
C. Wang, M. J. Williams, G. Lucovsky, The preparation of microcrystalline silicon (μc‐Si) thin films by remote plasma‐enhanced chemical vapor deposition Journal of Vacuum Science and Technology. ,vol. 9, pp. 444- 449 ,(1991) , 10.1116/1.577430
Y. Nasuno, M. Kondo, A. Matsuda, Passivation of oxygen-related donors in microcrystalline silicon by low temperature deposition Applied Physics Letters. ,vol. 78, pp. 2330- 2332 ,(2001) , 10.1063/1.1364657
P. Torres, J. Meier, R. Flückiger, U. Kroll, J. A. Anna Selvan, H. Keppner, A. Shah, S. D. Littelwood, I. E. Kelly, P. Giannoulès, Device grade microcrystalline silicon owing to reduced oxygen contamination Applied Physics Letters. ,vol. 69, pp. 1373- 1375 ,(1996) , 10.1063/1.117440