Convergence of random walks to Brownian motion in phylogenetic tree-space

作者: Tom M. W. Nye

DOI:

关键词: Random walkPoint (geometry)GeodesicMathematicsDistribution (mathematics)Metric spaceEuclidean spaceMathematical analysisMultivariate normal distributionBrownian motion

摘要: The set of all phylogenetic (or evolutionary) trees for a fixed species forms manifold-stratified geodesic metric space known as Billera-Holmes-Vogtmann tree-space. In order to analyse samples it is desirable construct parametric distributions on this space, but task very challenging. One way such consider particles undergoing Brownian motion in tree-space from starting point. distribution the after given duration time analogous multivariate normal Euclidean space. Since these cannot be worked with directly, we approximating them by suitably defined random walks We prove that number steps tends infinity and step-size zero, determined transition kernel walk converges corresponding motion. This result opens up possibility statistical modelling using obtained kernels methods developed here could extended establish similar results other complexes or spaces.

参考文章(11)
Alexander S. Kechris, Classical descriptive set theory ,(1987)
Steven E. Shreve, Ioannis Karatzas, Brownian Motion and Stochastic Calculus ,(1987)
J. Steve Marron, Andrés M. Alonso, Overview of object oriented data analysis Biometrical Journal. ,vol. 56, pp. 732- 753 ,(2014) , 10.1002/BIMJ.201300072
Sean Skwerer, Elizabeth Bullitt, Stephan Huckemann, Ezra Miller, Ipek Oguz, Megan Owen, Vic Patrangenaru, Scott Provan, J. S. Marron, Tree-Oriented Analysis of Brain Artery Structure Journal of Mathematical Imaging and Vision. ,vol. 50, pp. 126- 143 ,(2014) , 10.1007/S10851-013-0473-0
Michael Brin, Yuri Kifer, Brownian motion, harmonic functions and hyperbolicity for Euclidean complexes Mathematische Zeitschrift. ,vol. 238, pp. 421- 468 ,(2001) , 10.1007/PL00004875
Louis J. Billera, Karen Vogtmann, Susan P. Holmes, Geometry of the space of phylogenetic trees ,(2000)
Grady Weyenberg, Peter M. Huggins, Christopher L. Schardl, Daniel K. Howe, Ruriko Yoshida, kdetrees: Non-parametric estimation of phylogenetic tree distributions. Bioinformatics. ,vol. 30, pp. 2280- 2287 ,(2014) , 10.1093/BIOINFORMATICS/BTU258
Tom MW Nye, None, An algorithm for constructing principal geodesics in phylogenetic treespace IEEE/ACM Transactions on Computational Biology and Bioinformatics. ,vol. 11, pp. 304- 315 ,(2014) , 10.1109/TCBB.2014.2309599
Nathanaël Enriquez, Yuri Kifer, Markov Chains on Graphs and Brownian Motion Journal of Theoretical Probability. ,vol. 14, pp. 495- 510 ,(2001) , 10.1023/A:1011119932045
Ezra Miller, Megan Owen, J. Scott Provan, Polyhedral computational geometry for averaging metric phylogenetic trees Advances in Applied Mathematics. ,vol. 68, pp. 51- 91 ,(2015) , 10.1016/J.AAM.2015.04.002