作者: T. Rapcsák , T. T. Thang
DOI: 10.1007/BF02592202
关键词: Metric (mathematics) 、 Algorithm 、 Interior point method 、 Linear programming 、 Vector field 、 Polynomial 、 Mathematics 、 Canonical form 、 Variable (mathematics) 、 Information geometry
摘要: In the paper, behaviour of interior point algorithms is analyzed by using a variable metric method approach. A class polynomial given achieving O ((n/β)L) iterations for solving canonical form linear optimization problem with respect to wide Riemannian metrics, wheren number dimensions and β fixed value. It shown that vector fields several negative gradient field potential or logarithmic barrier function suitable metrics.