Subgradient Algorithm on Riemannian Manifolds

作者: O. P. Ferreira , P. R. Oliveira

DOI: 10.1023/A:1022675100677

关键词:

摘要: The subgradient method is generalized to the context of Riemannian manifolds. motivation can be seen in non-Euclidean metrics that occur interior-point methods. In frame, natural curves for local steps are geodesies relative specific manifold. this paper, influence sectional curvature manifold on convergence discussed, as well proof if nonnegative.

参考文章(18)
T. Rapcsák, Geodesic convexity in nonlinear optimization Journal of Optimization Theory and Applications. ,vol. 69, pp. 169- 183 ,(1991) , 10.1007/BF00940467
David G. Ebin, Jeff Cheeger, Comparison theorems in Riemannian geometry ,(2008)
D. A. Bayer, J. C. Lagarias, The nonlinear geometry of linear programming. I. Affine and projective scaling trajectories Transactions of the American Mathematical Society. ,vol. 314, pp. 499- 526 ,(1989) , 10.1090/S0002-9947-1989-1005525-6
T. Rapcsák, T. T. Thang, A class of polynomial variable metric algorithms for linear optimization Mathematical Programming. ,vol. 74, pp. 319- 331 ,(1996) , 10.1007/BF02592202
D. Gabay, Minimizing a differentiable function over a differential manifold Journal of Optimization Theory and Applications. ,vol. 37, pp. 177- 219 ,(1982) , 10.1007/BF00934767
R. Burachik, L. M. Graña Drummond, A.N. Iusem, B. F. Svaiter, Full convergence of the steepest descent method with inexact line searches Optimization. ,vol. 32, pp. 137- 146 ,(1995) , 10.1080/02331939508844042
Sehun Kim, Hyunsil Ahn, Convergence of a generalized subgradient method for nondifferentiable convex optimization Mathematical Programming. ,vol. 50, pp. 75- 80 ,(1991) , 10.1007/BF01594925
Krzysztof Czesław Kiwiel, An aggregate subgradient method for nonsmooth convex minimization Mathematical Programming. ,vol. 27, pp. 320- 341 ,(1983) , 10.1007/BF02591907
T. Rapcsák, T. T. Thang, Nonlinear coordinate representations of smooth optimization problems Journal of Optimization Theory and Applications. ,vol. 86, pp. 459- 489 ,(1995) , 10.1007/BF02192090
D. A. Bayer, J. C. Lagarias, The nonlinear geometry of linear programming. II. Legendre transform coordinates and central trajectories Transactions of the American Mathematical Society. ,vol. 314, pp. 527- 581 ,(1989) , 10.1090/S0002-9947-1989-1005526-8