Complex Dynamical Networks

作者: Judith Lehnert

DOI: 10.1007/978-3-319-25115-8_2

关键词: Discrete mathematicsCluster coefficientAdjacency matrixNetwork modelMathematicsComplex networkRandom graphTerm (logic)Delay differential equationComplex dynamics

摘要: The term complex networks refers to graphs with non-trivial topological features. This chapter gives a recapitulation on the theory of networks, discusses quantities used describe and introduces most important network models namely random (Solomonoff Rapoport 1951; 1957; Erdős Renyi 1959, 1960), small-world (Watts Strogatz 1998; Monasson 1999), scale-free (Barabasi Bonabeau 2003). For reviews textbooks see Boccaletti et al. (2006b), Albert Barabasi (2002), Newman (2003), (2006), (2010), (2012), (2014), Kivela (2014).

参考文章(67)
Emilia Fridman, Discrete-Time Delay Systems Birkhäuser, Cham. pp. 243- 272 ,(2014) , 10.1007/978-3-319-09393-2_6
Lada A. Adamic, The Small World Web european conference on research and advanced technology for digital libraries. pp. 443- 452 ,(1999) , 10.1007/3-540-48155-9_27
Robert M. May, Roy M. Anderson, Infectious Diseases of Humans: Dynamics and Control ,(1991)
D. Hunt, G. Korniss, B. K. Szymanski, Network synchronization in a noisy environment with time delays: fundamental limits and trade-offs. Physical Review Letters. ,vol. 105, pp. 068701- ,(2010) , 10.1103/PHYSREVLETT.105.068701
Philipp Hövel, Control of Complex Nonlinear Systems with Delay Control of Complex Nonlinear Systems with Delay:. ,(2010) , 10.1007/978-3-642-14110-2
Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, W. Willinger, The origin of power laws in Internet topologies revisited international conference on computer communications. ,vol. 2, pp. 608- 617 ,(2002) , 10.1109/INFCOM.2002.1019306
Yoshiki Kuramoto, Dorjsuren Battogtokh, Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators arXiv: Statistical Mechanics. ,(2002)
U. Ernst, K. Pawelzik, T. Geisel, Delay-induced multistable synchronization of biological oscillators Physical Review E. ,vol. 57, pp. 2150- 2162 ,(1998) , 10.1103/PHYSREVE.57.2150