Lipschitz stability of operators in Banach spaces

作者: V. Yu. Protasov

DOI: 10.1134/S0081543813010203

关键词: Affine transformationMathematicsOperator (computer programming)Metric (mathematics)Banach spaceConstant (mathematics)Discrete mathematicsCauchy distributionType (model theory)Lipschitz continuity

摘要: We consider approximations of an arbitrarymap F: X → Y between Banach spaces and by affine operator A: in the Lipschitz metric: difference F — A has to be continuous with a small constant ɛ > 0. In case = ℝ we show that if can affinely ɛ-approximated on any straight line X, then it globally 2ɛ-approximated X. The 2ɛ is sharp. Generalizations this result arbitrary dual are proved, optimality conditions shown examples. As corollary obtain solution problem stated Zs. Pales 2008. relation our results Ulam-Hyers-Rassias stability Cauchy type equations discussed.

参考文章(30)
Vicente Montesinos Santalucía, Václav Zizler, Petr Habala, Jan Pelant, Marián Fabian, Petr Hájek, Functional Analysis and Infinite-Dimensional Geometry ,(2001)
Roman Ger, Peter Semrl, The stability of the exponential equation Proceedings of the American Mathematical Society. ,vol. 124, pp. 779- 787 ,(1996) , 10.1090/S0002-9939-96-03031-6
Themistocles M. Rassias, On the Stability of Functional Equations and a Problem of Ulam Acta Applicandae Mathematicae. ,vol. 62, pp. 23- 130 ,(2000) , 10.1023/A:1006499223572
Stanislaw M. Ulam, A collection of mathematical problems ,(1960)
Joram Lindenstrauss, David Preiss, Jaroslav Tišer, Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces ,(2012)
N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces Studia Mathematica. ,vol. 57, pp. 147- 190 ,(1976) , 10.4064/SM-57-2-147-190
J. R. Retherford, Book Review: Vector measures Bulletin of the American Mathematical Society. ,vol. 84, pp. 681- 686 ,(1978) , 10.1090/S0002-9904-1978-14524-8
Jacek Tabor, David Yost, Applications of Inverse Limits to Extensions of Operators and Approximation of Lipschitz Functions Journal of Approximation Theory. ,vol. 116, pp. 257- 267 ,(2002) , 10.1006/JATH.2002.3673
Zenon Moszner, On the stability of functional equations Aequationes Mathematicae. ,vol. 77, pp. 33- 88 ,(2009) , 10.1007/S00010-008-2945-7
Themistocles M. Rassias, On the stability of the linear mapping in Banach spaces Proceedings of the American Mathematical Society. ,vol. 72, pp. 297- 300 ,(1978) , 10.1090/S0002-9939-1978-0507327-1