Applications of Inverse Limits to Extensions of Operators and Approximation of Lipschitz Functions

作者: Jacek Tabor , David Yost

DOI: 10.1006/JATH.2002.3673

关键词:

摘要: We consider extensions of linear operators from finite dimensional subspaces. As a corollary Steenrod's theorem about inverse limits topological spaces, we obtain new results concerning approximation in tensor product spaces and the stability Cauchy functional equation.

参考文章(6)
David Yost, Félix Cabello Sánchez, Jesús María Fernández Castillo, Sobczyk's theorems from A to B. Extracta Mathematicae. ,vol. 15, pp. 391- 420 ,(2000)
P. D. Morris, E. W. Cheney, On the existence and characterization of minimal projections. Crelle's Journal. ,vol. 270, pp. 61- 76 ,(1972)
Grzegorz Lewicki, Minimal extensions in tensor product spaces Journal of Approximation Theory. ,vol. 97, pp. 366- 383 ,(1999) , 10.1006/JATH.1998.3246
Jacek Tabor, Józef Tabor, Local stability of the Cauchy and Jensen equations in function spaces Aequationes Mathematicae. ,vol. 58, pp. 296- 310 ,(1999) , 10.1007/S000100050117
Paul Civin, N. Dunford, J. T. Schwartz, Linear Operators. Part I: General Theory. American Mathematical Monthly. ,vol. 67, pp. 199- ,(1960) , 10.2307/2308567
Grzegorz Lewicki, Best approximation in spaces of bounded linear operators Instytut Matematyczny Polskiej Akademi Nauk(Warszawa). ,(1994)