Ecological assessment of fuel cell electric vehicles with special focus on type IV carbon fiber hydrogen tank

作者: Alicia Benitez , Christina Wulf , Andreas de Palmenaer , Michael Lengersdorf , Tim Röding

DOI: 10.1016/J.JCLEPRO.2020.123277

关键词: Waste managementEcological assessmentHydrogen tankEnvironmental scienceLife-cycle assessmentHydrogenElectric vehicleHydrogen storageProduction (economics)Renewable energy

摘要: Abstract Fuel cell electric vehicles promise to be a viable technical option for using surplus energy produced by renewables, and in turn, help the transport sector reduce environmental impacts. However, technology is still under development and, some components, performance uncertain, e.g. hydrogen storage tank. Manufacturers produce tanks consisting of carbon composite materials because their mechanical properties. Yet, production fibers involves complex energy-intensive processes. Therefore, this study addresses Life Cycle Assessment (LCA) fuel vehicle (FCEV) focuses on manufacturing process tank needed its production. This suggests that important climate change, ionizing radiation fossil depletion, but less relevant toxic-related indicators. The evaluation future scenario suggested an improvement tank, especially regarding change 46%, namely 5.6 t CO2-Eq versus 3.0 t CO2-Eq, human toxicity 75%, 2.7 t 1, 4-DCB-Eq 0.7 t per current conditions, respectively. Finally, lifetime mileage 150,000 km, responsible 15 kg CO2-Eq/100 km 9 kg scenario,

参考文章(29)
G. Rebitzer, T. Ekvall, R. Frischknecht, D. Hunkeler, G. Norris, T. Rydberg, W.-P. Schmidt, S. Suh, B.P. Weidema, D.W. Pennington, Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications Environment International. ,vol. 30, pp. 701- 720 ,(2004) , 10.1016/J.ENVINT.2003.11.005
M Pehnt, Life-cycle assessment of fuel cell stacks International Journal of Hydrogen Energy. ,vol. 26, pp. 91- 101 ,(2001) , 10.1016/S0360-3199(00)00053-7
Tim Ellringmann, Christian Wilms, Moritz Warnecke, Gunnar Seide, Thomas Gries, Carbon fiber production costing: a modular approach: Textile Research Journal. ,vol. 86, pp. 178- 190 ,(2016) , 10.1177/0040517514532161
Daniel Garraín, Yolanda Lechón, Exploratory environmental impact assessment of the manufacturing and disposal stages of a new PEM fuel cell International Journal of Hydrogen Energy. ,vol. 39, pp. 1769- 1774 ,(2014) , 10.1016/J.IJHYDENE.2013.11.095
H.S. Roh, T.Q. Hua, R.K. Ahluwalia, Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles International Journal of Hydrogen Energy. ,vol. 38, pp. 12795- 12802 ,(2013) , 10.1016/J.IJHYDENE.2013.07.016
A. Fysikopoulos, D. Anagnostakis, K. Salonitis, G. Chryssolouris, An Empirical Study of the Energy Consumption in Automotive Assembly Procedia CIRP. ,vol. 3, pp. 477- 482 ,(2012) , 10.1016/J.PROCIR.2012.07.082
Sujit Das, Life cycle assessment of carbon fiber-reinforced polymer composites International Journal of Life Cycle Assessment. ,vol. 16, pp. 268- 282 ,(2011) , 10.1007/S11367-011-0264-Z
T.Q. Hua, R.K. Ahluwalia, J.-K. Peng, M. Kromer, S. Lasher, K. McKenney, K. Law, J. Sinha, Technical assessment of compressed hydrogen storage tank systems for automotive applications International Journal of Hydrogen Energy. ,vol. 36, pp. 3037- 3049 ,(2010) , 10.1016/J.IJHYDENE.2010.11.090