Mutual diffusion in dense supercritical fluids

作者: D.J. McConalogue , E. McLaughlin

DOI: 10.1080/00268976900100541

关键词: Real systemsThermodynamicsChemistrySupercritical fluidDiffusion (business)Binary systemHard spheresRadial distribution function

摘要: An expression for the mutual diffusion coefficient of a dense binary system hard spheres, derived by using Percus-Yevick approximation contact radial distribution function, together with Thorne's extension Enskog theory, is used to study variation pressure, composition and ratio molecular diameters. Applications are made real systems.

参考文章(9)
Q. R. Jeffries, H. G. Drickamer, Diffusion in CO2–CH4 Mixtures to 225 Atmospheres Pressure Journal of Chemical Physics. ,vol. 22, pp. 436- 437 ,(1954) , 10.1063/1.1740086
T. G. Cowling, Sydney Chapman, David Park, The mathematical theory of non-uniform gases ,(1939)
I. Amdur, J. W. Irvine, E. A. Mason, J. Ross, Diffusion Coefficients of the Systems CO2–CO2 and CO2–N2O The Journal of Chemical Physics. ,vol. 20, pp. 436- 443 ,(1952) , 10.1063/1.1700438
Leo Durbin, Riki Kobayashi, Diffusion of Krypton‐85 in Dense Gases The Journal of Chemical Physics. ,vol. 37, pp. 1643- 1654 ,(1962) , 10.1063/1.1733354
I. Prigogine, George Weiss, Transport Processes in Statistical Mechanics Physics Today. ,vol. 12, pp. 34- 36 ,(1959) , 10.1063/1.3060890
J. L. Lebowitz, J. S. Rowlinson, Thermodynamic Properties of Mixtures of Hard Spheres Journal of Chemical Physics. ,vol. 41, pp. 133- 138 ,(1964) , 10.1063/1.1725611
J S Rowlinson, The equation of state of dense systems Reports on Progress in Physics. ,vol. 28, pp. 169- 199 ,(1965) , 10.1088/0034-4885/28/1/306
H. H. Reamer, R. H. Olds, B. H. Sage, W. N. Lacey, Phase Equilibrium in Hydrocarbon Systems.Methane–Carbon Dioxide System in the Gaseous Region Industrial & Engineering Chemistry. ,vol. 36, pp. 88- 90 ,(1944) , 10.1021/IE50409A019