Approximating the coefficients in semilinear stochastic partial differential equations

作者: Markus Kunze , Jan van Neerven

DOI: 10.1007/S00028-011-0102-6

关键词: MathematicsResolventHilbert spaceLipschitz continuityBrownian motionStochastic partial differential equationDiscrete mathematicsPure mathematicsPointwiseMultiplicative noiseBanach spaceMathematics (miscellaneous)

摘要: We investigate, in the setting of UMD Banach spaces E, continuous dependence on data A, F, G and ξ mild solutions semilinear stochastic evolution equations with multiplicative noise form $$ \left\{ \begin{array}{l} {\rm d}X(t) = [AX(t) + F(t, X(t))] \, d}t G(t, X(t)) d}W_H(t),\quad t \in [0,T],\\ X(0) \xi, \end{array} \right. $$ where WH is a cylindrical Brownian motion Hilbert space H. prove compensated X(t) − etAξ norms Lp(Ω;Cλ([0, T]; E)) assuming that approximating operators An are uniformly sectorial converge to A strong resolvent sense nonlinearities Fn Gn Lipschitz suitable F pointwise. Our results applied class parabolic SPDEs finite dimensional noise.

参考文章(29)
Jørgen Hoffmann-Jørgensen, Sums of independent Banach space valued random variables Studia Mathematica. ,vol. 52, pp. 159- 186 ,(1974) , 10.4064/SM-52-2-159-186
Jan van Neerven, γ-Radonifying Operators: A Survey The AMSI–ANU Workshop on Spectral Theory and Harmonic Analysis. pp. 1- 61 ,(2010)
William B. Johnson, Joram Lindenstrauss, Chapter 1 - Basic Concepts in the Geometry of Banach Spaces Handbook of the Geometry of Banach Spaces. ,vol. 1, pp. 1- 84 ,(2001) , 10.1016/S1874-5849(01)80003-6
Giuseppe Da Prato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions ,(1992)
Joram Lindenstrauss, W. B. Johnson, Handbook of the Geometry of Banach spaces Elsevier Science B.V.. ,vol. 2, ,(2001)
Wolfgang Arendt, APPROXIMATION OF DEGENERATE SEMIGROUPS Taiwanese Journal of Mathematics. ,vol. 5, pp. 279- 295 ,(2001) , 10.11650/TWJM/1500407337
Daniel Daners, Domain Perturbation for Linear and Semi-Linear Boundary Value Problems Handbook of Differential Equations - Stationary Partial Differential Equations. ,vol. 6, pp. 1- 81 ,(2008) , 10.1016/S1874-5733(08)80018-6
Frank Neubrander, Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, Vector-Valued Laplace Transforms and Cauchy Problems ,(2002)