Domain Perturbation for Linear and Semi-Linear Boundary Value Problems

作者: Daniel Daners

DOI: 10.1016/S1874-5733(08)80018-6

关键词:

摘要: Abstract This is a survey on elliptic boundary value problems varying domains and tools needed for that. Such arise in numerical analysis, shape optimisation the investigation of solution structure nonlinear equations. The methods are also useful to obtain certain results equations non-smooth by approximation smooth domains. Domain independent estimates smoothing properties an essential tool deal with domain perturbation problems, especially non-linear Hence we discuss such extensively, together some abstract linear operators. A second major part deals specific various conditions. We completely characterise convergence Dirichlet conditions give simple sufficient then prove homogenisation Robin fast oscillating boundaries, where condition changes limit. finally mention Neumann final concerned about using Leray-Schauder degree existence solutions slightly perturbed demonstrate how use get unbounded

参考文章(119)
D. G. Aronson, Non-negative solutions of linear parabolic equations Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 22, pp. 607- 694 ,(1968)
Daniel Daners, Existence and perturbation of principal eigenvalues for a periodic-parabolic problem. Electronic Journal of Differential Equations (EJDE) [electronic only]. ,vol. 2000, pp. 51- 67 ,(2000)
Eduard Feireisl, Hana Petzeltová, On the domain dependence of solutions to the two-phase Stefan problem Applications of Mathematics. ,vol. 45, pp. 131- 144 ,(2000) , 10.1023/A:1022287529464
D. Bucur, J.-P. Zolesio, OPTIMISATION DE FORME SOUS CONTRAINTE CAPACITAIRE Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 318, pp. 795- 800 ,(1994)
Izrail Moiseevich Gelfand, Some problems in the theory of quasilinear equations Springer Berlin Heidelberg. pp. 518- 604 ,(1987) , 10.1007/978-3-642-61705-8_30
Wolfgang Arendt, Mahamadi Warma, The Laplacian with Robin Boundary Conditions on Arbitrary Domains Potential Analysis. ,vol. 19, pp. 341- 363 ,(2003) , 10.1023/A:1024181608863
Jörgen Löfström, Jöran Bergh, Interpolation Spaces: An Introduction ,(2011)
Jürgen Appell, Petr P. Zabrejko, Nonlinear Superposition Operators ,(1990)