On the domain dependence of solutions to the two-phase Stefan problem

作者: Eduard Feireisl , Hana Petzeltová

DOI: 10.1023/A:1022287529464

关键词:

摘要: We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains Ώn ⊂ ℝN converge solution same domain Ω where is limit n in sense Mosco. The corresponding free boundaries Lebesgue measure ℝN.

参考文章(14)
Lucio Boccardo, François Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations Nonlinear Analysis-theory Methods & Applications. ,vol. 19, pp. 581- 597 ,(1992) , 10.1016/0362-546X(92)90023-8
Daniel Daners, Domain Perturbation for Linear and Nonlinear Parabolic Equations Journal of Differential Equations. ,vol. 129, pp. 358- 402 ,(1996) , 10.1006/JDEQ.1996.0122
Gianni Dal Maso, Umberto Mosco, Wiener's criterion and Γ-convergence Applied Mathematics and Optimization. ,vol. 15, pp. 15- 63 ,(1987) , 10.1007/BF01442645
D. Bucur, J.P. Zolesio, N-Dimensional Shape Optimization under Capacitary Constraint Journal of Differential Equations. ,vol. 123, pp. 504- 522 ,(1995) , 10.1006/JDEQ.1995.1171
Jeffrey Rauch, Michael Taylor, Potential and scattering theory on wildly perturbed domains Journal of Functional Analysis. ,vol. 18, pp. 27- 59 ,(1975) , 10.1016/0022-1236(75)90028-2
Michael G. Crandall, Hitoshi Ishii, Pierre-Louis Lions, User’s guide to viscosity solutions of second order partial differential equations Bulletin of the American Mathematical Society. ,vol. 27, pp. 1- 67 ,(1992) , 10.1090/S0273-0979-1992-00266-5
Jack K. Hale, Jose Vegas, A nonlinear parabolic equation with varying domain Archive for Rational Mechanics and Analysis. ,vol. 86, pp. 99- 123 ,(1984) , 10.1007/BF00275730
Anvarbek M. Meirmanov, The Stefan Problem ,(1992)