Robust EM kernel-based methods for linear system identification

作者: Giulio Bottegal , Aleksandr Y. Aravkin , Gianluigi Pillonetto , Håkan Hjalmarsson

DOI:

关键词: Random variableOutlierComputer scienceSystem identificationKernel (linear algebra)Probability density functionLaplace operatorMaximum a posteriori estimationOptimization problemKernel (statistics)AlgorithmEstimatorKrigingHyperparameter

摘要: Recent developments in system identification have brought attention to regularized kernel-based methods. This type of approach has been proven compare favorably with classic parametric However, current formulations are not robust respect outliers. In this paper, we introduce a novel method robustify To end, model the output measurement noise using random variables heavy-tailed probability density functions (pdfs), focusing on Laplacian and Student's t distributions. Exploiting representation these pdfs as scale mixtures Gaussians, cast our problem into Gaussian process regression framework, which requires estimating number hyperparameters data size order. overcome difficulty, design new maximum posteriori (MAP) estimator hyperparameters, solve related optimization iterative scheme based Expectation-Maximization (EM) method. presence outliers, tests simulated real show substantial performance improvement compared currently used methods for linear identification.

参考文章(30)
Andrej Nikolaevich Tikhonov, Vasiliy Yakovlevich Arsenin, Solutions of ill-posed problems ,(1977)
Tianshi Chen, Henrik Ohlsson, Lennart Ljung, On the estimation of transfer functions, regularizations and Gaussian processes-Revisited Automatica. ,vol. 48, pp. 1525- 1535 ,(2012) , 10.1016/J.AUTOMATICA.2012.05.026
Gideon Schwarz, Estimating the Dimension of a Model Annals of Statistics. ,vol. 6, pp. 461- 464 ,(1978) , 10.1214/AOS/1176344136
J.L. Rojo-Alvarez, M. Martinez-Ramon, M. dePrado-Cumplido, A. Artes-Rodriguez, A.R. Figueiras-Vidal, Support vector method for robust ARMA system identification IEEE Transactions on Signal Processing. ,vol. 52, pp. 155- 164 ,(2004) , 10.1109/TSP.2003.820084
John B. Moore, Brian D. O. Anderson, Mansour Eslami, Optimal Filtering IEEE Transactions on Systems, Man, and Cybernetics. ,(1982)
Geoffrey J. McLachlan, Thriyambakam Krishnan, The EM Algorithm and Extensions, 2E Wiley Series in Probability and Statistics. pp. 1- 369 ,(2008) , 10.1002/9780470191613
D. F. Andrews, C. L. Mallows, Scale Mixtures of Normal Distributions Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 36, pp. 99- 102 ,(1974) , 10.1111/J.2517-6161.1974.TB00989.X
Per Hagg, Christian A. Larsson, Hakan Hjalmarsson, Robust and adaptive excitation signal generation for input and output constrained systems 2013 European Control Conference (ECC). pp. 1416- 1421 ,(2013) , 10.23919/ECC.2013.6669537