Vapnik-Chervonenkis dimension and (pseudo-)hyperplane arrangements

作者: B. Gärtner , E. Welzl

DOI: 10.1007/BF02574389

关键词: Discrete mathematicsHyperplaneMathematicsDuality (order theory)Oriented matroidMatroidSpace (mathematics)CardinalityLinear subspaceCharacterization (mathematics)Combinatorics

摘要: An arrangement of oriented pseudohyperplanes in affined-space defines on its setX a set system (or range space) (X, ?), ? 2x VC-dimensiond natural way: to every cellc the assign subset havingc their positive side, and let be collection all these subsets. We investigate characterize spaces corresponding tosimple arrangements this way; such are calledpseudogeometric, they have property that cardinality is maximum for given VC-dimension. In general, calledmaximum, we show number rangesR?? whichX - R?? also, determines whether space pseudogeometric. Two other characterizations go via simple duality concept "small" subspaces. The correspondence obtained indirectly new characterization uniforom matroids: ?) naturally corresponds uniform matroid rank |X|--d if only VC-dimension isd,R?? impliesX R??, |?| under conditions.

参考文章(49)
B. Grünbaum, Arrangements and Spreads American Mathematical Society. ,vol. 10, ,(1972) , 10.1090/CBMS/010
Balas Kausik Natarajan, Machine Learning: A Theoretical Approach ,(1992)
Vladimir Naumovich Vapnik, Estimation of Dependences Based on Empirical Data ,(2010)
Norman Biggs, Martin Anthony, Computational learning theory: an introduction Cambridge University Press. ,(1992)
N. Alon, D. Haussler, E. Welzl, Partitioning and geometric embedding of range spaces of finite Vapnik-Chervonenkis dimension Proceedings of the third annual symposium on Computational geometry - SCG '87. pp. 331- 340 ,(1987) , 10.1145/41958.41994
N Sauer, On the density of families of sets Journal of Combinatorial Theory, Series A. ,vol. 13, pp. 145- 147 ,(1972) , 10.1016/0097-3165(72)90019-2
Keiichi Handa, A Characterization of Oriented Matroids in Terms of Topes European Journal of Combinatorics. ,vol. 11, pp. 41- 45 ,(1990) , 10.1016/S0195-6698(13)80054-6