An experimental study on asymmetric self-organizing map

作者: Dominik Olszewski

DOI: 10.1007/978-3-642-23878-9_6

关键词: Self-organizing mapExtension (predicate logic)Heart RhythmComputer scienceSound recognitionArtificial intelligence

摘要: The paper presents an extension of the justification for use asymmetric Self-Organizing Map (SOM). We claim that it can successfully applied in wider area research than textual data analysis. results our experimental study fields sound recognition and heart rhythm confirm this claim, report superiority approach over symmetric one, both parts experiments.

参考文章(12)
Dominik Olszewski, Asymmetric k-Means Algorithm Adaptive and Natural Computing Algorithms. pp. 1- 10 ,(2011) , 10.1007/978-3-642-20267-4_1
Jan Wessnitzer, Barbara Webb, Darren Smith, A Model of Non-elemental Associative Learning in the Mushroom Body Neuropil of the Insect Brain international conference on adaptive and natural computing algorithms. pp. 488- 497 ,(2007) , 10.1007/978-3-540-71618-1_54
Alberto Muñoz, Isaac Martín de Diego, Javier M. Moguerza, Support vector machine classifiers for asymmetric proximities international conference on artificial neural networks. pp. 217- 224 ,(2003) , 10.1007/3-540-44989-2_27
Teuvo Kohonen, Self-Organizing Maps ,(1995)
Manuel Martín-Merino, Alberto Muñoz, Visualizing asymmetric proximities with SOM and MDS models Neurocomputing. ,vol. 63, pp. 171- 192 ,(2005) , 10.1016/J.NEUCOM.2004.04.010
Bertie Zielman, Willem J. Heiser, Models for asymmetric proximities British Journal of Mathematical and Statistical Psychology. ,vol. 49, pp. 127- 146 ,(1996) , 10.1111/J.2044-8317.1996.TB01078.X
Filip Mulier, Vladimir Cherkassky, Self-organization as an iterative kernel smoothing process Neural Computation. ,vol. 7, pp. 1165- 1177 ,(1995) , 10.1162/NECO.1995.7.6.1165
T. Heskes, Self-organizing maps, vector quantization, and mixture modeling IEEE Transactions on Neural Networks. ,vol. 12, pp. 1299- 1305 ,(2001) , 10.1109/72.963766