Self-organizing maps, vector quantization, and mixture modeling

作者: T. Heskes

DOI: 10.1109/72.963766

关键词: Self-organizing mapData miningArtificial intelligencePattern recognitionVisualizationVector quantizationUnsupervised learningData visualizationMultinomial distributionComputer scienceMissing data

摘要: Self-organizing maps are popular algorithms for unsupervised learning and data visualization. Exploiting the link between vector quantization mixture modeling, we derive expectation-maximization (EM) self-organizing with without missing values. We compare elastic-net approach explain why former is better suited visualization of high-dimensional data. Several extensions improvements discussed. As an illustration apply a map based on multinomial distribution to market basket analysis.

参考文章(28)
Teuvo Kohonen, Self-organized formation of topologically correct feature maps Biological Cybernetics. ,vol. 43, pp. 509- 521 ,(1988) , 10.1007/BF00337288
Arun K Pujari, Data Mining Techniques ,(2001)
Tom Heskes, Energy functions for self-organizing maps Oja, E. (ed.), Kohonen Maps. pp. 303- 315 ,(1999) , 10.1016/B978-044450270-4/50024-3
Christopher M. Bishop, Markus Svensén, Christopher K. I. Williams, GTM: A Principled Alternative to the Self-Organizing Map neural information processing systems. ,vol. 9, pp. 354- 360 ,(1996) , 10.1007/3-540-61510-5_31
Thore Graepel, Matthias Burger, Klaus Obermayer, Self-organizing maps: Generalizations and new optimization techniques Neurocomputing. ,vol. 21, pp. 173- 190 ,(1998) , 10.1016/S0925-2312(98)00035-6
Stephen P. Luttrell, A Bayesian analysis of self-organizing maps Neural Computation. ,vol. 6, pp. 767- 794 ,(1994) , 10.1162/NECO.1994.6.5.767
Kenneth Rose, Eitan Gurewitz, Geoffrey C. Fox, Statistical mechanics and phase transitions in clustering. Physical Review Letters. ,vol. 65, pp. 945- 948 ,(1990) , 10.1103/PHYSREVLETT.65.945
H. Ritter, T. Kohonen, Self-organizing semantic maps Biological Cybernetics. ,vol. 61, pp. 241- 254 ,(1989) , 10.1007/BF00203171