Wavelets and Two Dimensional Turbulence

作者: J. Weiss

DOI: 10.1007/978-3-642-77769-1_60

关键词: CombinatoricsTurbulencePhysicsNabla symbol

摘要: The time evolution of an inviscid, incompressible fluid is governed by Euler’s equations for the velocity field, v $$ {\widehat v_t} + \widehat \cdot \nabla = p $$ (1) where $$\begin{array}{*{20}{c}} \left( {u,v} \right)\left( x,t} \right)} \\ {\nabla 0} x {x,y} \right) \in D {R^2}} {\begin{array}{*{20}{c}} m 0for\widehat \partial D} \bot {t 0}&{\widehat {{\widehat v}_0}\left( x} \end{array}.} \end{array}} \end{array}$$ .

参考文章(19)
U. Frisch, M. Lesieur, P. L. Sulem, Crossover dimensions for fully developed turbulence Physical Review Letters. ,vol. 37, pp. 895- 897 ,(1976) , 10.1103/PHYSREVLETT.37.895
Y. Couder, Two-dimensional grid turbulence in a thin liquid film Journal de Physique Lettres. ,vol. 45, pp. 353- 360 ,(1984) , 10.1051/JPHYSLET:01984004508035300
Tosio Kato, On classical solutions of the two-dimensional non-stationary Euler equation Archive for Rational Mechanics and Analysis. ,vol. 25, pp. 188- 200 ,(1967) , 10.1007/BF00251588
Y. Couder, C. Basdevant, Experimental and numerical study of vortex couples in two-dimensional flows Journal of Fluid Mechanics. ,vol. 173, pp. 225- 251 ,(1986) , 10.1017/S0022112086001155
Gilbert Strang, Wavelets and Dilation Equations: A Brief Introduction SIAM Review. ,vol. 31, pp. 614- 627 ,(1989) , 10.1137/1031128
Robert H. Kraichnan, Statistical dynamics of two-dimensional flow Journal of Fluid Mechanics. ,vol. 67, pp. 155- 175 ,(1975) , 10.1017/S0022112075000225
Robert H. Kraichnan, Inertial Ranges in Two-Dimensional Turbulence Physics of Fluids. ,vol. 10, pp. 1417- 1423 ,(1967) , 10.1063/1.1762301
D. I. Pullin, P. A. Jacobs, R. H. J. Grimshaw, P. G. Saffman, Instability and filamentation of finite-amplitude waves on vortex layers of finite thickness Journal of Fluid Mechanics. ,vol. 209, pp. 359- 384 ,(1989) , 10.1017/S0022112089003149
John Weiss, The dynamics of entropy transfer in two-dimensional hydrodynamics Physica D: Nonlinear Phenomena. ,vol. 48, pp. 273- 294 ,(1991) , 10.1016/0167-2789(91)90088-Q