A Formal Classification of Bursting Mechanisms in Excitable Systems

作者: J. Rinzel

DOI: 10.1007/978-3-642-93360-8_26

关键词: Slow timeHomoclinic orbitHopf bifurcationPhysicsTheta modelMillisecondBurstingSteady state (electronics)Order (biology)Biological system

摘要: Burst activity is characterized by slowly alternating phases of near steady state behavior and trains rapid spike-like oscillations; examples bursting patterns are shown in Fig. 2. These two have been called the silent active respectively [2], In case electrical biological membrane systems slow time scale on order tens seconds while spikes millisecond scales. our study several specific models for burst we identified a number different mechanisms generation (which characteristic classes models). We will describe qualitatively some these way schematic diagrams 1.

参考文章(28)
John Rinzel, Bursting oscillations in an excitable membrane model Springer Berlin Heidelberg. pp. 304- 316 ,(1985) , 10.1007/BFB0074739
John Rinzel, Young Seek Lee, On Different Mechanisms for Membrane Potential Bursting Lecture Notes in Biomathematics. pp. 19- 33 ,(1986) , 10.1007/978-3-642-93318-9_2
J Rinzel, On repetitive activity in nerve. Federation proceedings. ,vol. 37, pp. 2793- 2802 ,(1978)
Richard E. Plant, Bifurcation and Resonance in a Model for Bursting Nerve Cells Journal of Mathematical Biology. ,vol. 11, pp. 15- 32 ,(1981) , 10.1007/BF00275821
John Rinzel, Young Seek Lee, Dissection of a model for neuronal parabolic bursting. Journal of Mathematical Biology. ,vol. 25, pp. 653- 675 ,(1987) , 10.1007/BF00275501
John Rinzel, Ira B. Schwartz, One variable map prediction of Belousov–Zhabotinskii mixed mode oscillations Journal of Chemical Physics. ,vol. 80, pp. 5610- 5615 ,(1984) , 10.1063/1.446625
A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve The Journal of Physiology. ,vol. 117, pp. 500- 544 ,(1952) , 10.1113/JPHYSIOL.1952.SP004764
Teresa Ree Chay, Chaos in a three-variable model of an excitable cell Physica D: Nonlinear Phenomena. ,vol. 16, pp. 233- 242 ,(1985) , 10.1016/0167-2789(85)90060-0