Determination of ancestral proportions in synthetic bovine breeds using commonly employed microsatellite markers.

作者: H. M. S. Bicalho , I. K. P. Mendes , E. M. Queiroz , C. G. Pimenta , H. B. Pena

DOI: 10.31031/GMR.2021.05.000615

关键词: BreedAllele frequencySevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)Taurine cattleGeneticsGenotypeZebuAnimal GeneticsMicrosatelliteBiology

摘要: The International Society of Animal Genetics (ISAG) has chosen nine microsatellites (international marker set) as a standard that should be included in all cattle parentage studies. They are BM1824, BM2113, INRA023, SPS115, TGLA122, TGLA126, TGLA227, ETH10, and ETH225. We decided to ascertain whether this microsatellite set could used determine ancestral proportions individual animals synthetic breeds produced by crossing zebu taurine cattle. Since the genotypes these markers routinely available, would constitute practical cost-free method estimate ancestry breed animals. Genotypes 100 Gir Holstein were examined for ISAG set. As expected, there very sig- nificant allele frequency differences between two at most loci. also typed 20 Girolando which was complete genealogical information. "Structure" software easily distinguished Hol- stein based on their genotypes; it attributed genomic proportion each

参考文章(23)
Julie Sarfati, Catherine Dodé, Jacques Young, Kallmann Syndrome Caused by Mutations in the PROK2 and PROKR2 Genes: Pathophysiology and Genotype-Phenotype Correlations Frontiers of Hormone Research. ,vol. 39, pp. 121- 132 ,(2010) , 10.1159/000312698
David E. MacHugh, Mark D. Shriver, Daniel G. Bradley, Ronan T. Loftus, Patrick Cunningham, Microsatellite DNA Variation and the Evolution, Domestication and Phylogeography of Taurine and Zebu Cattle (Bos taurus and Bos indicus) Genetics. ,vol. 146, pp. 1071- 1086 ,(1997) , 10.1093/GENETICS/146.3.1071
Jonathan K. Pritchard, Matthew Stephens, Peter Donnelly, Inference of population structure using multilocus genotype data Genetics. ,vol. 155, pp. 945- 959 ,(2000) , 10.1093/GENETICS/155.2.945
P Kumar, A R Freeman, R T Loftus, C Gaillard, D Q Fuller, D G Bradley, Admixture analysis of South Asian cattle. Heredity. ,vol. 91, pp. 43- 50 ,(2003) , 10.1038/SJ.HDY.6800277
Preeti Kohli, Zachary M. Soler, Shaun A. Nguyen, John S. Muus, Rodney J. Schlosser, The Association Between Olfaction and Depression: A Systematic Review Chemical Senses. ,vol. 41, pp. 479- 486 ,(2016) , 10.1093/CHEMSE/BJW061
Daniel R Storm, Xuanmao Chen, Liyan Qiu, Robert P LeBel, Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. International journal of physiology, pathophysiology and pharmacology. ,vol. 8, pp. 95- 108 ,(2016)
Eryn Slankster, Seth R. Odell, Dennis Mathew, Strength in diversity: functional diversity among olfactory neurons of the same type Journal of Bioenergetics and Biomembranes. ,vol. 51, pp. 65- 75 ,(2019) , 10.1007/S10863-018-9779-3
Richard L. Doty, Treatments for smell and taste disorders: A critical review. Handbook of Clinical Neurology. ,vol. 164, pp. 455- 479 ,(2019) , 10.1016/B978-0-444-63855-7.00025-3
Roberto Vincis, Alfredo Fontanini, Central taste anatomy and physiology. Handbook of Clinical Neurology. ,vol. 164, pp. 187- 204 ,(2019) , 10.1016/B978-0-444-63855-7.00012-5
Andrea Giacomelli, Laura Pezzati, Federico Conti, Dario Bernacchia, Matteo Siano, Letizia Oreni, Stefano Rusconi, Cristina Gervasoni, Anna Lisa Ridolfo, Giuliano Rizzardini, Spinello Antinori, Massimo Galli, Self-reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study. Clinical Infectious Diseases. ,vol. 71, pp. 889- 890 ,(2020) , 10.1093/CID/CIAA330