作者: K. C. Kiwiel
DOI: 10.1007/BF02191984
关键词: Proximal Gradient Methods 、 Mathematics 、 Dual (category theory) 、 Mathematical optimization 、 Regular polygon 、 Bundle methods 、 Convex optimization 、 Quadratic programming 、 Theory of computation 、 Decomposition (computer science)
摘要: A proximal bundle method is presented for minimizing a nonsmooth convex functionf. At each iteration, it requires only one approximate evaluation off and its e-subgradient, finds search direction via quadratic programming. When applied to the Lagrangian decomposition of programs, allows inexact solutions decomposed subproblems; yet, increasing their required accuracy automatically, asymptotically both primal dual solutions. It an implementable version point algorithm. Some encouraging numerical experience reported.