A Proximal Bundle Method Based on Approximate Subgradients

作者: Michael Hintermüller

DOI: 10.1023/A:1011259017643

关键词:

摘要: In this paper a proximal bundle method is introduced that capable to deal with approximate subgradients. No further knowledge of the approximation quality (like explicit or controllability error bounds) required for proving convergence. It shown every accumulation point sequence iterates generated by proposed algorithm well-defined solution exact minimization problem. case subgradients behaves like well-established methods. Numerical tests emphasize theoretical findings.

参考文章(14)
Frank H. Clarke, Optimization and nonsmooth analysis ,(1983)
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, Convex analysis and minimization algorithms ,(1993)
Claude Lemaréchal, Claudia Sagastizábal, Variable metric bundle methods: from conceptual to implementable forms Mathematical Programming. ,vol. 76, pp. 393- 410 ,(1997) , 10.1007/BF02614390
Krzysztof C. Kiwiel, An algorithm for nonsmooth convex minimization with errors Mathematics of Computation. ,vol. 45, pp. 173- 180 ,(1985) , 10.1090/S0025-5718-1985-0790650-5
Krzysztof C. Kiwiel, Andrzej Ruszcayǹski, N. Z. Shor, Minimization methods for non-differentiable functions ,(1985)
Robert Mifflin, A quasi-second-order proximal bundle algorithm. Mathematical Programming. ,vol. 73, pp. 51- 72 ,(1996) , 10.1007/BF02592098
K. C. Kiwiel, Approximations in proximal bundle methods and decomposition of convex programs Journal of Optimization Theory and Applications. ,vol. 84, pp. 529- 548 ,(1995) , 10.1007/BF02191984
Jacques Chatelon, Donald Hearn, Timothy J. Lowe, A Subgradient Algorithm for Certain Minimax and Minisum Problems—The Constrained Case SIAM Journal on Control and Optimization. ,vol. 20, pp. 455- 469 ,(1982) , 10.1137/0320034