A bundle method using two polyhedral approximations of the ε-enlargement of a maximal monotone operator

作者: Ludovic Nagesseur

DOI: 10.1007/S10589-015-9808-7

关键词:

摘要: Until now, a few bundle methods for general maximal monotone operators exist and they were only employed with one polyhedral approximation of the $$\varepsilon $$?-enlargement operator considered. However, we find in literature several hybrid-proximal which could be adapted great deal techniques order to zero operator; yet, also consider use two approximations. The method developed this study has used double at each iteration. Besides, as an application, give forward---backward type algorithm.

参考文章(29)
Regina S. Burachik, Claudia Sagastizábal, B. F. Svaiter, Bundle Methods for Maximal Monotone Operators Lecture Notes in Economics and Mathematical Systems. pp. 49- 64 ,(1999) , 10.1007/978-3-642-45780-7_4
Regina Sandra Burachik, B. F. Svaiter, ε-Enlargements of Maximal Monotone Operators in Banach Spaces Set-valued Analysis. ,vol. 7, pp. 117- 132 ,(1999) , 10.1023/A:1008730230603
EDUARDO H. ZARANTONELLO, Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory Contributions to Nonlinear Functional Analysis#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 12–14, 1971. pp. 237- 424 ,(1971) , 10.1016/B978-0-12-775850-3.50013-3
Regina S. Burachik, Alfredo N. Iusem, B. F. Svaiter, Enlargement of Monotone Operators with Applications to Variational Inequalities Set-valued Analysis. ,vol. 5, pp. 159- 180 ,(1997) , 10.1023/A:1008615624787
Regina S. Burachik, Claudia A. Sagastizábal, B. F. Svaiter, ε-Enlargements of Maximal Monotone Operators: Theory and Applications Springer, Boston, MA. pp. 25- 43 ,(1998) , 10.1007/978-1-4757-6388-1_2
M. V. Solodov, B. F. Svaiter, A hybrid projection-proximal point algorithm. Journal of Convex Analysis. ,vol. 6, pp. 59- 70 ,(1998)
Regina S. Burachik, Alfredo N Iusem, Set-valued mappings and enlargements of monotone operators Springer. ,(2008)
Michael Hintermüller, A Proximal Bundle Method Based on Approximate Subgradients Computational Optimization and Applications. ,vol. 20, pp. 245- 266 ,(2001) , 10.1023/A:1011259017643
Claudia A. Sagastizábal, Mikhail V. Solodov, On the Relation Between Bundle Methods for Maximal Monotone Inclusions and Hybrid Proximal Point Algorithms Studies in Computational Mathematics. ,vol. 8, pp. 441- 455 ,(2001) , 10.1016/S1570-579X(01)80026-4