Microfluidic Raman Spectroscopy for Bio-chemical Sensing and Analysis

作者: Praveen C. Ashok , Kishan Dholakia

DOI: 10.1007/978-3-642-25498-7_9

关键词: LimitingNanotechnologyRaman spectroscopySoft lithographySample preparationAnalyteMicrofluidics

摘要: The detection and analysis of bio-chemical analytes are important in the fields personal healthcare, drug development, environmental science, among others. field microfluidics aims to realize portable devices which can perform fast sensitive bioanalyte with minimal sample preparation. Raman spectroscopy is a powerful tool for analyte owing its high specificity ability multi-component an analyte. Combining would help achieve miniaturized analytical that may provide rich information about given However, low cross-section process demands special geometries such convergence. majority previous embodiments were restricted free-space geometry, limiting portability. recent studies, fiber-based system incorporated offers opportunity develop optofluidic devices. Here, we review various approaches used using detection, could be enhance sensitivity spectroscopy-based detection. This followed by detailed discussion systems.

参考文章(60)
Jaehyun Jung, Jaebum Choo, Duck Joong Kim, Sanghoon Lee, Quantitative determination of nicotine in a PDMS microfluidic channel using surface enhanced Raman spectroscopy Bulletin of The Korean Chemical Society. ,vol. 27, pp. 277- 280 ,(2006) , 10.5012/BKCS.2006.27.2.277
P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, K. Dholakia, Dual beam fibre trap for Raman micro-spectroscopy of single cells Optics Express. ,vol. 14, pp. 5779- 5791 ,(2006) , 10.1364/OE.14.005779
Andrew P. Shreve, Nerine J. Cherepy, Richard A. Mathies, Effective Rejection of Fluorescence Interference in Raman Spectroscopy Using a Shifted Excitation Difference Technique Applied Spectroscopy. ,vol. 46, pp. 707- 711 ,(1992) , 10.1366/0003702924125122
Pertti J. Viskari, James P. Landers, Unconventional detection methods for microfluidic devices Electrophoresis. ,vol. 27, pp. 1797- 1810 ,(2006) , 10.1002/ELPS.200500565
Michael Mazilu, Anna Chiara De Luca, Andrew Riches, C. Simon Herrington, Kishan Dholakia, Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy. Optics Express. ,vol. 18, pp. 11382- 11395 ,(2010) , 10.1364/OE.18.011382
Xunli Zhang, Huabing Yin, Jon M. Cooper, Stephen J. Haswell, Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques Analytical and Bioanalytical Chemistry. ,vol. 390, pp. 833- 840 ,(2008) , 10.1007/S00216-007-1564-9
Robin Fortt, Robert C. R. Wootton, Andrew J. de Mello, Continuous-Flow Generation of Anhydrous Diazonium Species: Monolithic Microfluidic Reactors for the Chemistry of Unstable Intermediates Organic Process Research & Development. ,vol. 7, pp. 762- 768 ,(2003) , 10.1021/OP025586J
Anna Chiara De Luca, Michael Mazilu, Andrew Riches, C. Simon Herrington, Kishan Dholakia, Online Fluorescence Suppression in Modulated Raman Spectroscopy Analytical Chemistry. ,vol. 82, pp. 738- 745 ,(2010) , 10.1021/AC9026737
John R. Lombardi, Ronald L. Birke, A Unified Approach to Surface-Enhanced Raman Spectroscopy Journal of Physical Chemistry C. ,vol. 112, pp. 5605- 5617 ,(2008) , 10.1021/JP800167V
Hamish C. Hunt, James S. Wilkinson, Optofluidic integration for microanalysis Microfluidics and Nanofluidics. ,vol. 4, pp. 53- 79 ,(2008) , 10.1007/S10404-007-0223-Y