Role of the red blood cell in nitric oxide homeostasis and hypoxic vasodilation.

作者: Mark T. Gladwin

DOI: 10.1007/978-0-387-34817-9_17

关键词: HemoglobinNitric oxide homeostasisDeoxygenated HemoglobinPharmacologyEndothelial dysfunctionVasodilationRed blood cellNitric oxideEndotheliumChemistryBiochemistry

摘要: Nitric oxide (NO) regulates normal vasomotor tone and modulates important homeostatic functions such as thrombosis, cellular proliferation, adhesion molecule expression. Recent data implicate a critical function for hemoglobin the erythrocyte in regulating bioavailability of NO vascular compartment. Under normoxic conditions erythrocytic scavenges produces vasopressor effect that is limited by diffusional barriers along endothelium unstirred layer around erythrocyte. In hemolytic diseases, intravascular hemolysis releases from red blood cell into plasma (decompartmentalizes hemoglobin), which then able to scavenge endothelial derived 600-fold faster than hemoglobin, thereby dysregulating homoestasis. addition releasing contains arginase when released further dysregulates arginine metabolism. These support existence novel mechanism human disease, associated dysfunction, potentially participates vasculopathy iatrogenic hereditary conditions. providing an scavenging role physiological regulation NO-dependent vasodilation, may deliver deoxygenates. Two mechanisms have been proposed explain this principle: 1) Oxygen linked allosteric delivery S-nitrosothiols S-nitrosated (SNO-Hb), 2) nitrite reductase activity deoxygenated reduces vasodilates circulation oxygen gradient. The later newly described discussed context hypoxic flow sensing.

参考文章(99)
M. T. Gladwin, F. P. Ognibene, L. K. Pannell, J. S. Nichols, M. E. Pease-Fye, J. H. Shelhamer, A. N. Schechter, Relative role of heme nitrosylation and beta-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 97, pp. 9943- 9948 ,(2000) , 10.1073/PNAS.180155397
Enika Nagababu, Somasundaram Ramasamy, Darrell R. Abernethy, Joseph M. Rifkind, Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. Journal of Biological Chemistry. ,vol. 278, pp. 46349- 46356 ,(2003) , 10.1074/JBC.M307572200
Yanhong Zhang, Neil Hogg, Mixing artifacts from the bolus addition of nitric oxide to oxymyoglobin: implications for S-nitrosothiol formation Free Radical Biology and Medicine. ,vol. 32, pp. 1212- 1219 ,(2002) , 10.1016/S0891-5849(02)00829-8
Johnathan D. Tune, Mark W. Gorman, Eric O. Feigl, Matching coronary blood flow to myocardial oxygen consumption Journal of Applied Physiology. ,vol. 97, pp. 404- 415 ,(2004) , 10.1152/JAPPLPHYSIOL.01345.2003
Mark T. Gladwin, Xunde Wang, Christopher D. Reiter, Benjamin K. Yang, Esther X. Vivas, Celia Bonaventura, Alan N. Schechter, S-Nitrosohemoglobin is unstable in the reductive erythrocyte environment and lacks O2/NO-linked allosteric function. Journal of Biological Chemistry. ,vol. 277, pp. 27818- 27828 ,(2002) , 10.1074/JBC.M203236200
KARL A. NATH, ZVONIMIR S. KATUSIC, MARK T. GLADWIN, The Perfusion Paradox and Vascular Instability in Sickle Cell Disease Microcirculation. ,vol. 11, pp. 179- 193 ,(2004) , 10.1080/10739680490278592
Robert T. Eberhardt, Lillian McMahon, Stephen J. Duffy, Martin H. Steinberg, Susan P. Perrine, Joseph Loscalzo, Jay D. Coffman, Joseph A. Vita, Sickle cell anemia is associated with reduced nitric oxide bioactivity in peripheral conduit and resistance vessels. American Journal of Hematology. ,vol. 74, pp. 104- 111 ,(2003) , 10.1002/AJH.10387
Zhi Huang, Joseph G. Louderback, Mansi Goyal, Fouad Azizi, S.Bruce King, Daniel B. Kim-Shapiro, Nitric oxide binding to oxygenated hemoglobin under physiological conditions. Biochimica et Biophysica Acta. ,vol. 1568, pp. 252- 260 ,(2001) , 10.1016/S0304-4165(01)00227-6
Alan N. Schechter, Mark T. Gladwin, Hemoglobin and the paracrine and endocrine functions of nitric oxide. The New England Journal of Medicine. ,vol. 348, pp. 1483- 1485 ,(2003) , 10.1056/NEJMCIBR023045
X. Wang, J. E. Tanus-Santos, C. D. Reiter, A. Dejam, S. Shiva, R. D. Smith, N. Hogg, M. T. Gladwin, Biological activity of nitric oxide in the plasmatic compartment Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 11477- 11482 ,(2004) , 10.1073/PNAS.0402201101