On Hubbard-Stratonovich transformations over hyperbolic domains

作者: Yan V Fyodorov

DOI: 10.1088/0953-8984/17/20/018

关键词: Random matrixNonlinear systemHubbard modelSymmetry (physics)PhysicsIdentity (philosophy)Mathematical physics

摘要: We discuss and prove the validity of Hubbard–Stratonovich (HS) identities over hyperbolic domains which are used frequently in studies on disordered systems random matrices. also introduce a counterpart HS identity arising with 'chiral' symmetry. Apart from this we outline way deriving nonlinear σ-model gauge-invariant Wegner k-orbital model avoiding use transformations.

参考文章(26)
Martin R. Zirnbauer, The supersymmetry method of random matrix theory arXiv: Mathematical Physics. ,(2004)
Martin R. Zirnbauer, Symmetry classes in random matrix theory arXiv: Mathematical Physics. ,(2004)
M. Disertori, H. Pinson, T. Spencer, Density of states for Random Band Matrix arXiv: Mathematical Physics. ,(2001) , 10.1007/S00220-002-0733-0
J.J.M. Verbaarschot, T. Wettig, RANDOM MATRIX THEORY AND CHIRAL SYMMETRY IN QCD Annual Review of Nuclear and Particle Science. ,vol. 50, pp. 343- 410 ,(2000) , 10.1146/ANNUREV.NUCL.50.1.343
Thomas Guhr, Heiner Kohler, Recursive construction for a class of radial functions. I. Ordinary space Journal of Mathematical Physics. ,vol. 43, pp. 2707- 2740 ,(2002) , 10.1063/1.1463709
A.D. Jackson, M.K. Şener, J.J.M. Verbaarschot, Finite volume partition functions and Itzykson-Zuber integrals Physics Letters B. ,vol. 387, pp. 355- 360 ,(1996) , 10.1016/0370-2693(96)00993-8
M.R. Zirnbauer, T. Spencer, Spontaneous Symmetry Breaking of a Hyperbolic Sigma Model in Three Dimensions Communications in Mathematical Physics. ,vol. 252, pp. 167- 187 ,(2004) , 10.1007/S00220-004-1223-3
H Nishioka, J.J.M Verbaarschot, H.A Weidenmüller, S Yoshida, Statistical theory of precompound reactions: The multistep compound process Annals of Physics. ,vol. 172, pp. 67- 99 ,(1986) , 10.1016/0003-4916(86)90020-5
Lothar Schäfer, Franz Wegner, Disordered system withn orbitals per site: Lagrange formulation, hyperbolic symmetry, and goldstone modes European Physical Journal B. ,vol. 38, pp. 113- 126 ,(1980) , 10.1007/BF01598751