Equivalence of domains for hyperbolic Hubbard-Stratonovich transformations

作者: M. R. Zirnbauer , J. Mueller-Hill

DOI: 10.1063/1.3585672

关键词:

摘要: We settle a long standing issue concerning the traditional derivation of non-compact non-linear sigma models in theory disordered electron systems: hyperbolic Hubbard-Stratonovich (HS) transformation Pruisken-Schaefer type. Only recently validity such transformations was proved case U(p,q) (non-compact unitary) and O(p,q) orthogonal) symmetry. In this article we give proof for general symmetry groups. Moreover show that type are related to other variants HS by deformation domain integration. particular clarify origin surprising sign factors which were discovered orthogonal

参考文章(13)
Günter M. Ziegler, Lectures on Polytopes ,(1994)
Franz Wegner, The mobility edge problem: Continuous symmetry and a conjecture European Physical Journal B. ,vol. 35, pp. 207- 210 ,(1979) , 10.1007/BF01319839
Lothar Schäfer, Franz Wegner, Disordered system withn orbitals per site: Lagrange formulation, hyperbolic symmetry, and goldstone modes European Physical Journal B. ,vol. 38, pp. 113- 126 ,(1980) , 10.1007/BF01598751
Yan V Fyodorov, On Hubbard-Stratonovich transformations over hyperbolic domains Journal of Physics: Condensed Matter. ,vol. 17, pp. 1915- 1928 ,(2005) , 10.1088/0953-8984/17/20/018
Anthony W. Knapp, Lie groups beyond an introduction ,(1988)
J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering Physics Reports. ,vol. 129, pp. 367- 438 ,(1985) , 10.1016/0370-1573(85)90070-5
Martin R. Zirnbauer, Riemannian symmetric superspaces and their origin in random‐matrix theory Journal of Mathematical Physics. ,vol. 37, pp. 4986- 5018 ,(1996) , 10.1063/1.531675
K.B. Efetov, Supersymmetry and theory of disordered metals Advances in Physics. ,vol. 32, pp. 53- 127 ,(1983) , 10.1080/00018738300101531
Adrianus M.M. Pruisken, Lothar Schäfer, The Anderson model for electron localisation non-linear σ model, asymptotic gauge invariance Nuclear Physics. ,vol. 200, pp. 20- 44 ,(1982) , 10.1016/0550-3213(82)90056-6