Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation

作者: Donald W. Marquaridt

DOI: 10.1080/00401706.1970.10488699

关键词: RegressionMathematicsNonlinear systemClass (set theory)Perspective (geometry)Ridge (differential geometry)Generalized inverseApplied mathematicsEstimatorEstimationMathematical optimization

摘要: … Thus, we define a scaled matrix A*, and a scaled vector g* … example, the variance inflation factors are both 25.25, but in problems larger than 2 X 2, the variance inflation factors are not …

参考文章(20)
John S. Chipman, On Least Squares with Insufficient Observations Journal of the American Statistical Association. ,vol. 59, pp. 1078- 1111 ,(1964) , 10.1080/01621459.1964.10480751
T. N. E. Greville, Some Applications of the Pseudoinverse of a Matrix SIAM Review. ,vol. 2, pp. 15- 22 ,(1960) , 10.1137/1002004
G. Golub, W. Kahan, Calculating the Singular Values and Pseudo-Inverse of a Matrix Journal of The Society for Industrial and Applied Mathematics, Series B: Numerical Analysis. ,vol. 2, pp. 205- 224 ,(1965) , 10.1137/0702016
Arthur E. Hoerl, Robert W. Kennard, Ridge Regression: Applications to Nonorthogonal Problems Technometrics. ,vol. 12, pp. 69- 82 ,(1970) , 10.1080/00401706.1970.10488635
G. Golub, Numerical methods for solving linear least squares problems Numerische Mathematik. ,vol. 7, pp. 206- 216 ,(1965) , 10.1007/BF01436075
Charles M. Price, The Matrix Pseudoinverse and Minimal Variance Estimates Siam Review. ,vol. 6, pp. 115- 120 ,(1963) , 10.1137/1006029
D.W. Marquardt, R.G. Bennett, E.J. Burrell, Least squares analysis of electron paramagnetic resonance spectra Journal of Molecular Spectroscopy. ,vol. 7, pp. 269- 279 ,(1961) , 10.1016/0022-2852(61)90360-5
Arthur E. Hoerl, Robert W. Kennard, Ridge regression: biased estimation for nonorthogonal problems Technometrics. ,vol. 42, pp. 80- 86 ,(2000) , 10.2307/1271436