Existence of Minimizers for Polyconvex and Nonpolyconvex Problems

作者: Giovanni Cupini , Elvira Mascolo

DOI: 10.1137/040611999

关键词: Boundary (topology)MathematicsRegular polygonContinuous function (set theory)Mathematical analysisOmegaLipschitz continuityCombinatorics

摘要: We study the existence of Lipschitz minimizers integral functionals $$ \mathcal{I}(u)=\int_{\Omega} \varphi(x,\textrm{det}\,Du(x))\,dx,$$ where $\Omega$ is an open subset $\mathbb{R}^N$ with boundary, $\varphi:\Omega\times (0,+\infty)\to [0,+\infty)$ a continuous function, and $u\in W^{1,N}(\Omega, \mathbb{R}^N)$, $u(x)=x$ on $\partial \Omega$. consider both cases $\varphi$ convex nonconvex respect to last variable. The attainment results are obtained passing through minimization auxiliary functional solution prescribed Jacobian equation.

参考文章(17)
Paolo Marcellini, The Stored-Energy for Some Discontinuous Deformations in Nonlinear Elasticity Progr. Nonlinear Differential Equations Appl., 2, Birkhäuser Boston, Boston, MA, 1989. pp. 767- 786 ,(1989) , 10.1007/978-1-4615-9831-2_11
Ye Dong, Prescribing the Jacobian determinant in Sobolev spaces Annales De L Institut Henri Poincare-analyse Non Lineaire. ,vol. 11, pp. 275- 296 ,(1994) , 10.1016/S0294-1449(16)30185-8
Raymond William Ogden, Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 326, pp. 565- 584 ,(1972) , 10.1098/RSPA.1972.0026
Arrigo Cellina, Sandro Zagatti, An Existence Result in a Problem of the Vectorial Case of the Calculus of Variations Siam Journal on Control and Optimization. ,vol. 33, pp. 960- 970 ,(1995) , 10.1137/S0363012993247640
P. Celada, S. Perrotta, Vectorial Hamilton—Jacobi equations with rank one affine dependence on the gradient Nonlinear Analysis-theory Methods & Applications. ,vol. 41, pp. 383- 404 ,(2000) , 10.1016/S0362-546X(98)00283-1
Irene Fonseca, Nicola Fusco, Paolo Marcellini, An existence result for a nonconvex variational problem via regularity ESAIM: Control, Optimisation and Calculus of Variations. ,vol. 7, pp. 69- 95 ,(2002) , 10.1051/COCV:2002004
B. Dacorogna, A relaxation theorem and its application to the equilibrium of gases Archive for Rational Mechanics and Analysis. ,vol. 77, pp. 359- 386 ,(1981) , 10.1007/BF00280643
Roger Temam, Ivar Ekeland, Analyse convexe et problèmes variationnels ,(1974)