Approximate symmetries and solutions of the hyperbolic heat equation

作者: B. Diatta , C. Wafo Soh , C.M. Khalique

DOI: 10.1016/J.AMC.2008.06.060

关键词: Numerical analysisMathematical analysisHyperbolic heat equationHomogeneous spaceApproximate symmetryHeat equationLie algebraHyperbolic partial differential equationMathematicsInvariant (mathematics)

摘要: We perform an approximate symmetry classification of the hyperbolic heat equation with variable parameters. It is found that its Lie algebra infinite-dimensional. obtain optimal systems one-dimensional subalgebras some finite-dimensional algebra. These are employed to construct invariant solutions.

参考文章(17)
Stephen C. Anco, George W. Bluman, Symmetry and Integration Methods for Differential Equations ,(2002)
K. J. Cheng, Wave Characteristics of Heat Conduction Using a Discrete Microscopic Model Journal of Heat Transfer-transactions of The Asme. ,vol. 111, pp. 225- 231 ,(1989) , 10.1115/1.3250666
M Pakdemirli, M Yürüsoy, İT Dolapçı, None, Comparison of Approximate Symmetry Methods for Differential Equations Acta Applicandae Mathematicae. ,vol. 80, pp. 243- 271 ,(2004) , 10.1023/B:ACAP.0000018792.87732.25
D. E. Glass, M. N. Özişik, D. S. McRae, Brian Vick, Hyperbolic heat conduction with temperature-dependent thermal conductivity Journal of Applied Physics. ,vol. 59, pp. 1861- 1865 ,(1986) , 10.1063/1.336413
R. K. Gazizov, C. M. Khalique, Approximate transformations for van der Pol-type equations Mathematical Problems in Engineering. ,vol. 2006, pp. 1- 11 ,(2006) , 10.1155/MPE/2006/68753
IT Dolapçı, M Pakdemirli, None, Approximate symmetries of creeping flow equations of a second grade fluid International Journal of Non-linear Mechanics. ,vol. 39, pp. 1603- 1619 ,(2004) , 10.1016/J.IJNONLINMEC.2004.01.002