作者: B. Diatta , C. Wafo Soh , C.M. Khalique
DOI: 10.1016/J.AMC.2008.06.060
关键词: Numerical analysis 、 Mathematical analysis 、 Hyperbolic heat equation 、 Homogeneous space 、 Approximate symmetry 、 Heat equation 、 Lie algebra 、 Hyperbolic partial differential equation 、 Mathematics 、 Invariant (mathematics)
摘要: We perform an approximate symmetry classification of the hyperbolic heat equation with variable parameters. It is found that its Lie algebra infinite-dimensional. obtain optimal systems one-dimensional subalgebras some finite-dimensional algebra. These are employed to construct invariant solutions.