Approximately invariant solutions of creeping flow equations

作者: Matteo Gorgone

DOI: 10.1016/J.IJNONLINMEC.2018.05.018

关键词:

摘要: Abstract In this paper, the steady creeping flow equations of a second grade fluid in cartesian coordinates are considered; involve small parameter related to dimensionless non-Newtonian coefficient. According recently introduced approach, first order approximate Lie symmetries computed, some classes approximately invariant solutions explicitly determined, and boundary value problem is analyzed. The main aim paper methodological, considered mechanical model used test reliability procedure physically important application.

参考文章(36)
Stephen C. Anco, George W. Bluman, Alexei F. Cheviakov, Applications of Symmetry Methods to Partial Differential Equations ,(2011)
Stephen C. Anco, George W. Bluman, Symmetry and Integration Methods for Differential Equations ,(2002)
'Alī Hasan Nā'ifa, Introduction to perturbation techniques ,(1981)
Francesco Oliveri, General dynamical systems described by first order quasilinear PDEs reducible to homogeneous and autonomous form International Journal of Non-linear Mechanics. ,vol. 47, pp. 53- 60 ,(2012) , 10.1016/J.IJNONLINMEC.2011.08.012
R.L. Fosdick, K.R. Rajagopal, Uniqueness and drag for fluids of second grade in steady motion International Journal of Non-Linear Mechanics. ,vol. 13, pp. 131- 137 ,(1978) , 10.1016/0020-7462(78)90001-X
B. Diatta, C. Wafo Soh, C.M. Khalique, Approximate symmetries and solutions of the hyperbolic heat equation Applied Mathematics and Computation. ,vol. 205, pp. 263- 272 ,(2008) , 10.1016/J.AMC.2008.06.060
K.R. Rajagopal, On the creeping flow of the second-order fluid Journal of Non-newtonian Fluid Mechanics. ,vol. 15, pp. 239- 246 ,(1984) , 10.1016/0377-0257(84)80008-7
Saul Kaplun, The role of coordinate systems in boundary-layer theory Zeitschrift für Angewandte Mathematik und Physik. ,vol. 5, pp. 111- 135 ,(1954) , 10.1007/BF01600771
M. Pakdemirli, E.S. Şuhubi, Boundary layer theory for second order fluids International Journal of Engineering Science. ,vol. 30, pp. 523- 532 ,(1992) , 10.1016/0020-7225(92)90042-F