Estimating polygenic effects using markers of the entire genome.

作者: Shizhong Xu

DOI: 10.1093/GENETICS/163.2.789

关键词: BiologyBayes' theoremQuantitative trait locusModel selectionPrior probabilityGene mappingBayesian linear regressionGeneticsGenomeGamma distribution

摘要: Molecular markers have been used to map quantitative trait loci. However, they are rarely evaluate effects of chromosome segments the entire genome. The original interval-mapping approach and various modified versions it may limited use in evaluating genetic genome because require evaluation multiple models model selection. Here we present a Bayesian regression method simultaneously estimate associated with With method, were able handle situations which number is even larger than observations. key success that allow each marker effect its own variance parameter, turn has prior distribution so can be estimated from data. Under this hierarchical model, large most negligible effects. As result, possible Using data North American Barley Genome Mapping Project double-haploid barley, found gene follows closely an L-shaped Gamma distribution, contrast bell-shaped when interval mapping. In addition, show serves as alternative or better QTL mapping produces clearer signals for QTL. Similar results simulated sets F 2 backcross (BC) families.

参考文章(30)
Bruno Bost, Christine Dillmann, Christine Dillmann, Dominique de Vienne, Fluxes and Metabolic Pools as Model Traits for Quantitative Genetics. I. The L-Shaped Distribution of Gene Effects Genetics. ,vol. 153, pp. 2001- 2012 ,(1999) , 10.1093/GENETICS/153.4.2001
Zhao-Bang Zeng, Chen-Hung Kao, Robert D. Teasdale, Multiple interval mapping for quantitative trait loci. Genetics. ,vol. 152, pp. 1203- 1216 ,(1999) , 10.1093/GENETICS/152.3.1203
T. H. E. Meuwissen, M. E. Goddard, B. J. Hayes, Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps Genetics. ,vol. 157, pp. 1819- 1829 ,(2001) , 10.1093/GENETICS/157.4.1819
Elja Arjas, Mikko J. Sillanpää, Bayesian Mapping of Multiple Quantitative Trait Loci From Incomplete Inbred Line Cross Data Genetics. ,vol. 148, pp. 1373- 1388 ,(1998) , 10.1093/GENETICS/148.3.1373
Harald H.H. Göring, Joseph D. Terwilliger, John Blangero, Large upward bias in estimation of locus-specific effects from genomewide scans American Journal of Human Genetics. ,vol. 69, pp. 1357- 1369 ,(2001) , 10.1086/324471
N. A. Tinker, D. E. Mather, B. G. Rossnagel, K. J. Kasha, A. Kleinhofs, P. M. Hayes, D. E. Falk, T. Ferguson, L. P. Shugar, W. G. Legge, R. B. Irvine, T. M. Choo, K. G. Briggs, S. E Ullrich, J. D. Franckowiak, T. K. Blake, R. J. Graf, S. M. Dofing, M. A. Saghai Maroof, G. J. Scoles, D. Hoffman, L. S. Dahleen, A. Kilian, F. Chen, R. M. Biyashev, D. A. Kudrna, B. J. Steffenson, Regions of the genome that affect agronomic performance in two-row barley Crop Science. ,vol. 36, pp. 1053- 1062 ,(1996) , 10.2135/CROPSCI1996.0011183X003600040040X
Arthur E. Hoerl, Robert W. Kennard, Ridge Regression: Applications to Nonorthogonal Problems Technometrics. ,vol. 12, pp. 69- 82 ,(1970) , 10.1080/00401706.1970.10488635