作者: John A. Toth , Steve Zelditch
DOI: 10.1007/S00039-013-0220-0
关键词: Fourier integral operator 、 Boundary (topology) 、 Pure mathematics 、 Geodesic 、 Zero (complex analysis) 、 Mathematics 、 Surface (topology) 、 Mathematical analysis 、 Hypersurface 、 Riemannian manifold 、 Ergodic theory
摘要: We prove that if (M, g) is a compact Riemannian manifold with ergodic geodesic flow, and \({H \subset M}\) smooth hypersurface satisfying generic microlocal asymmetry condition, then restrictions \({\varphi_j |_H}\) of an orthonormal basis \({\{\varphi_j\}}\) Δ-eigenfunctions to H are quantum on H. The condition satisfied by circles, closed horocycles geodesics hyperbolic surface. A key step in the proof matrix elements \({\langle{F}\varphi_j, \varphi_{j}\rangle}\) Fourier integral operators F whose canonical relation almost nowhere commutes flow must tend zero.