Quantum Ergodic Restriction Theorems: Manifolds Without Boundary

作者: John A. Toth , Steve Zelditch

DOI: 10.1007/S00039-013-0220-0

关键词: Fourier integral operatorBoundary (topology)Pure mathematicsGeodesicZero (complex analysis)MathematicsSurface (topology)Mathematical analysisHypersurfaceRiemannian manifoldErgodic theory

摘要: We prove that if (M, g) is a compact Riemannian manifold with ergodic geodesic flow, and \({H \subset M}\) smooth hypersurface satisfying generic microlocal asymmetry condition, then restrictions \({\varphi_j |_H}\) of an orthonormal basis \({\{\varphi_j\}}\) Δ-eigenfunctions to H are quantum on H. The condition satisfied by circles, closed horocycles geodesics hyperbolic surface. A key step in the proof matrix elements \({\langle{F}\varphi_j, \varphi_{j}\rangle}\) Fourier integral operators F whose canonical relation almost nowhere commutes flow must tend zero.

参考文章(30)
Andreas Seeger, Allan Greenleaf, Fourier integral operators with fold singularities. Crelle's Journal. ,vol. 455, pp. 35- 56 ,(1994)
Christopher D. Sogge, Steven Morris Zelditch, Concerning the L4 norms of typical eigenfunctions on compact surfaces arXiv: Analysis of PDEs. pp. 407- 423 ,(2013)
R. B. Melrose, Equivalence of Glancing Hypersurfaces. Inventiones Mathematicae. ,vol. 37, pp. 165- 191 ,(1976) , 10.1007/BF01390317
Melissa Tacy, Semiclassical L p Estimates of Quasimodes on Submanifolds Communications in Partial Differential Equations. ,vol. 35, pp. 1538- 1562 ,(2010) , 10.1080/03605301003611006
John A. Toth, Steve Zelditch, Quantum Ergodic Restriction Theorems. I: Interior Hypersurfaces in Domains with Ergodic Billiards Annales Henri Poincaré. ,vol. 13, pp. 599- 670 ,(2012) , 10.1007/S00023-011-0154-8
Raluca Felea, Composition of Fourier Integral Operators with Fold and Blowdown Singularities Communications in Partial Differential Equations. ,vol. 30, pp. 1717- 1740 ,(2005) , 10.1080/03605300500299968
Lars Hörmander, Fourier integral operators. I Acta Mathematica. ,vol. 127, pp. 79- 183 ,(1971) , 10.1007/BF02392052
N. Burq, P. Gérard, N. Tzvetkov, Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds Duke Mathematical Journal. ,vol. 138, pp. 445- 486 ,(2007) , 10.1215/S0012-7094-07-13834-1
Herbert Koch, Daniel Tataru, Maciej Zworski, Semiclassical LP estimates Annales Henri Poincaré. ,vol. 8, pp. 885- 916 ,(2007) , 10.1007/S00023-006-0324-2