A MATLAB Package for Markov Chain Monte Carlo with a Multi-Unidimensional IRT Model

作者: Yanyan Sheng

DOI: 10.18637/JSS.V028.I10

关键词: OgiveMarkov chainComputer scienceAlgorithmSoftwareMarkov chain Monte CarloBayesian probabilityItem response theoryArtificial intelligenceSet (abstract data type)Machine learningGibbs sampling

摘要: Unidimensional item response theory (IRT) models are useful when each is designed to measure some facet of a unified latent trait. In practical applications, items not necessarily measuring the same underlying trait, and hence more general multi-unidimensional model should be considered. This paper provides requisite information description software that implements Gibbs sampler for such with two parameters normal ogive form. The developed written in MATLAB package IRTmu2no. flexible enough allow user choice simulate binary data multiple dimensions, set number total or burn-in iterations, specify starting values prior distributions parameters, check convergence Markov chain, as well obtain Bayesian fit statistics. Illustrative examples provided demonstrate validate use package.

参考文章(40)
Ivo W. Molenaar, Estimation of item parameters. Workshop on Rasch Models - Foundations, Recent Developments, and Applications. pp. 39- 51 ,(1995) , 10.1007/978-1-4612-4230-7_3
Gerhard H. Fischer, Ivo W. Molenaar, Rasch models: foundations, recent developments and applications Springer-Verlag. ,(1995)
Michael J. Kolen, Robert L. Brennan, Test equating : methods and practices Springer-Verlag. ,(1995)
Steven P. Reise, Susan E. Embretson, Item response theory for psychologists ,(2000)
Yanyan Sheng, Markov Chain Monte Carlo Estimation of Normal Ogive IRT Models in MATLAB Journal of Statistical Software. ,vol. 25, pp. 1- 15 ,(2008) , 10.18637/JSS.V025.I08
R. D. Bock, M. Aitkin, Marginal maximum likelihood estimation of item parameters Psychometrika. ,vol. 47, pp. 369- 369 ,(1982) , 10.1007/BF02294168
Yanyan Sheng, Christopher K. Wikle, Comparing Multiunidimensional and Unidimensional Item Response Theory Models Educational and Psychological Measurement. ,vol. 67, pp. 899- 919 ,(2007) , 10.1177/0013164406296977