The matrix geometric mean of parameterized, weighted arithmetic and harmonic means

作者: Sejong Kim , Jimmie Lawson , Yongdo Lim

DOI: 10.1016/J.LAA.2011.04.010

关键词: Arithmetic meanHarmonic meanPythagorean meansGeometric–harmonic meanArithmeticWeighted geometric meanInequality of arithmetic and geometric meansQuasi-arithmetic meanMathematicsDiscrete mathematicsGeometric mean

摘要: We define a new family of matrix means {Lμ(ω;A)}μ∈R where ω and A vary over all positive probability vectors in Rm m-tuples definite matrices resp. Each these interpolates between the weighted harmonic mean (μ=-∞) arithmetic same weight (μ=∞) with Lμ≤Lν for μ≤ν. has variational characterization as unique minimizer sum symmetrized, parameterized Kullback–Leibler divergence. Furthermore, each can be realized common limit iteration by (in unparameterized case), or, more generally, resolvent means. Other basic typical properties multivariable are derived.

参考文章(9)
Maher Moakher, Philipp G. Batchelor, Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization Visualization and Processing of Tensor Fields. pp. 285- 298 ,(2006) , 10.1007/3-540-31272-2_17
Rajendra Bhatia, Positive Definite Matrices ,(2007)
Heinz H. Bauschke, Rafal Goebel, Yves Lucet, Xianfu Wang, The Proximal Average: Basic Theory SIAM Journal on Optimization. ,vol. 19, pp. 766- 785 ,(2008) , 10.1137/070687542
Dario A. Bini, Beatrice Meini, Federico Poloni, An effective matrix geometric mean satisfying the Ando-Li-Mathias properties Mathematics of Computation. ,vol. 79, pp. 437- 452 ,(2010) , 10.1090/S0025-5718-09-02261-3
Maher Moakher, On the Averaging of Symmetric Positive-Definite Tensors Journal of Elasticity. ,vol. 82, pp. 273- 296 ,(2006) , 10.1007/S10659-005-9035-Z
Jimmie D. Lawson, Yongdo Lim, The Geometric Mean, Matrices, Metrics, and More American Mathematical Monthly. ,vol. 108, pp. 797- 812 ,(2001) , 10.1080/00029890.2001.11919815
Heinz H. Bauschke, Sarah M. Moffat, Xianfu Wang, The resolvent average for positive semidefinite matrices Linear Algebra and its Applications. ,vol. 432, pp. 1757- 1771 ,(2010) , 10.1016/J.LAA.2009.11.028
Jonathan M. Borwein, Heinz H. Bauschke, Legendre functions and the method of random Bregman projections Heldermann Verlag. ,(1997)
Mustapha Raïssouli, Mohamed Chergui, Fatima Leazizi, ARITHMETIC-GEOMETRIC-HARMONIC MEAN OF THREE POSITIVE OPERATORS ,(2009)