The resolvent average for positive semidefinite matrices

作者: Heinz H. Bauschke , Sarah M. Moffat , Xianfu Wang

DOI: 10.1016/J.LAA.2009.11.028

关键词:

摘要: We define a new average — termed the resolvent for positive semidefinite matrices. For definite matrices, enjoys self-duality and it interpolates between harmonic arithmetic averages, which approaches when taking appropriate limits. compare to geometric mean. Some applications matrix functions are also given.

参考文章(22)
Jonathan M. Borwein, Adrian S. Lewis, Convex analysis and nonlinear optimization ,(2006)
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, Convex analysis and minimization algorithms ,(1993)
J.J. Moreau, Proximité et dualité dans un espace hilbertien Bulletin de la Société mathématique de France. ,vol. 79, pp. 273- 299 ,(1965) , 10.24033/BSMF.1625
W.N Anderson, R.J Duffin, Series and parallel addition of matrices Journal of Mathematical Analysis and Applications. ,vol. 26, pp. 576- 594 ,(1969) , 10.1016/0022-247X(69)90200-5
A. Moudafi, Parallel sum of nonlinear monotone operators and variational convergence Nonlinear Analysis-theory Methods & Applications. ,vol. 23, pp. 1507- 1514 ,(1994) , 10.1016/0362-546X(94)90201-1
Heinz H. Bauschke, Rafal Goebel, Yves Lucet, Xianfu Wang, The Proximal Average: Basic Theory SIAM Journal on Optimization. ,vol. 19, pp. 766- 785 ,(2008) , 10.1137/070687542
Rajendra Bhatia, John Holbrook, Riemannian geometry and matrix geometric means Linear Algebra and its Applications. ,vol. 413, pp. 594- 618 ,(2006) , 10.1016/J.LAA.2005.08.025
Ingram Olkin, Barry C. Arnold, Albert W. Marshall, Inequalities: Theory of Majorization and Its Applications ,(2011)
Heinz H. Bauschke, Yves Lucet, Michael Trienis, How to Transform One Convex Function Continuously into Another Siam Review. ,vol. 50, pp. 115- 132 ,(2008) , 10.1137/060664513
Maher Moakher, A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices SIAM Journal on Matrix Analysis and Applications. ,vol. 26, pp. 735- 747 ,(2005) , 10.1137/S0895479803436937