Instrumentation for Radionuclide Cardiology

作者: Samuel Lewis , Ernest Stokely , Robert Parkey

DOI: 10.1007/978-94-009-8904-7_1

关键词: Intracardiac injectionBrachial arteryMedicineInternal medicineCardiologyMyocardial metabolismRadionuclidePericardial effusionPerfusionBlood flowCardiac structure

摘要: Radioactive tracers have been employed for the evaluation of cardiac structure and function over 50 years. The discipline had its genesis in 1927 with innovative experiments Blumgart Weiss [1]. These investigators, utilizing principles radioactive tracer method devised by Hevesy [2], measured circulation man injecting a dose radium C-salt (radon) into an antecubital vein detecting arrival contralateral brachial artery Wilson cloud chamber. This technique was revived Prinzmetal associates [3] 1948 advent atomic age technology. Using Geiger-Muller counter artifical radionuclide 24Na, these investigators repeated determination time also recording temporal changes radioactivity heart lungs. angiocardiogram thus discovered. Many improvements instrumentation radiopharmaceuticals since introduced to facilitate central circulation. Cardiovascular nuclear medicine procedures today encompass myriad qualitative quantitative techniques including: (1) detection quantitation intracardiac shunts, (2) measurements regional myocardial blood flow, (3) visualization anatomic relationships major cardiovascular structures — such as chamber dilatation, ventricular or septal hypertrophy, pericardial effusion, aneu-rysm, (4) identification clot mass, (5) mechanical function, (6) identification, localization, sizing acute infarcts, (7) noninvasive assessment perfusion at rest during exercise pharmacologic stress, (8) severity valvular regurgitation, (9) metabolism.

参考文章(31)
L. W. Jones, K. S. Han, W. H. Beierwaltes, W. L. Rogers, Application of a Fresnel zone plate to gamma-ray imaging. The Journal of Nuclear Medicine. ,vol. 13, pp. 612- 615 ,(1972)
Peter Steele, Robert A. Vogel, Dennis Kirch, Michael LeFree, A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. The Journal of Nuclear Medicine. ,vol. 19, pp. 648- 654 ,(1978)
Z. H. Cho, General views on 3-D image reconstruction and computerized transverse axial tomography IEEE Transactions on Nuclear Science. ,vol. 21, pp. 44- 71 ,(1974) , 10.1109/TNS.1974.6499236
L. T. Chang, B. Macdonald, V. Perez-Mendez, L. Shiraishi, Coded Aperture Imaging of Gamma-Rays Using Multiple Pinhole Arrays and Multiwire Proportional Chamber Detector IEEE Transactions on Nuclear Science. ,vol. 22, pp. 374- 378 ,(1975) , 10.1109/TNS.1975.4327665
Z. H. Cho, J. K. Chan, L. Eriksson, Circular Ring Transverse Axial Positron Camera for 3-Dimensional Reconstruction of Radionuclides Distribution IEEE Transactions on Nuclear Science. ,vol. 23, pp. 613- 622 ,(1976) , 10.1109/TNS.1976.4328315
Ernest M. Stokely, Edda Sveinsdottir, Niels A. Lassen, Per Rommer, A single photon dynamic computer assisted tomograph (DCAT) for imaging brain function in multiple cross sections. Journal of Computer Assisted Tomography. ,vol. 4, pp. 230- 240 ,(1980) , 10.1097/00004728-198004000-00022
Richard Gordon, A tutorial on art (algebraic reconstruction techniques) IEEE Transactions on Nuclear Science. ,vol. 21, pp. 78- 93 ,(1974) , 10.1109/TNS.1974.6499238
RN Bracewell, Strip Integration in Radio Astronomy Australian Journal of Physics. ,vol. 9, pp. 198- 217 ,(1956) , 10.1071/PH560198
Chr. Bohm, L. Eriksson, M. Bergstrom, J. Litton, R. Sundman, M. Singh, A Computer Assisted Ringdector Positron Camera System for Reconstruction Tomography of the Brain IEEE Transactions on Nuclear Science. ,vol. 25, pp. 624- 637 ,(1978) , 10.1109/TNS.1978.4329384
David E. Kuhl, Roy Q. Edwards, Anthony R. Ricci, Robert J. Yacob, Thomas J. Mich, Abass Alavi, The Mark IV system for radionuclide computed tomography of the brain. Radiology. ,vol. 121, pp. 405- 413 ,(1976) , 10.1148/121.2.405