From Inverse Kinematics to Optimal Control

作者: Perle Geoffroy , Nicolas Mansard , Maxime Raison , Sofiane Achiche , Emo Todorov

DOI: 10.1007/978-3-319-06698-1_42

关键词: Optimal controlDifferential dynamic programmingSolverInverse kinematicsApplied mathematicsDynamical systems theoryDynamic programmingComputer scienceRobustness (computer science)Linearization

摘要: Numerical optimal control (the approximation of an optimal trajectory using numerical iterative algorithms) is a promising approach to compute the control of complex dynamical …

参考文章(21)
H. H. Rosenbrock, D. H. Jacobson, D. Q. Mayne, Differential Dynamic Programming The Mathematical Gazette. ,vol. 56, pp. 78- ,(1972) , 10.2307/3613752
Daniel B. Leineweber, Andreas Schäfer, Hans Georg Bock, Johannes P. Schlöder, An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications Computers & Chemical Engineering. ,vol. 27, pp. 167- 174 ,(2003) , 10.1016/S0098-1354(02)00195-3
Yuval Tassa, Nicolas Mansard, Emo Todorov, Control-limited differential dynamic programming international conference on robotics and automation. pp. 1168- 1175 ,(2014) , 10.1109/ICRA.2014.6907001
J. F. A. DE O. PANTOJA, Differential dynamic programming and Newton's method International Journal of Control. ,vol. 47, pp. 1539- 1553 ,(1988) , 10.1080/00207178808906114
Gene H. Golub, Charles F. Van Loan, Matrix computations (3rd ed.) Johns Hopkins University Press. ,(1996)
Adrien Escande, Nicolas Mansard, Pierre-Brice Wieber, Hierarchical quadratic programming The International Journal of Robotics Research. ,vol. 33, pp. 1006- 1028 ,(2014) , 10.1177/0278364914521306
Katja Mombaur, Using optimization to create self-stable human-like running Robotica. ,vol. 27, pp. 321- 330 ,(2009) , 10.1017/S0263574708004724
Donald Goldfarb, A family of variable-metric methods derived by variational means Mathematics of Computation. ,vol. 24, pp. 23- 26 ,(1970) , 10.1090/S0025-5718-1970-0258249-6