Singular eigenvalue limit of advection-diffusion operators and properties of the strange eigenfunctions in globally chaotic flows

作者: Stefano Cerbelli , Massimiliano Giona , Olexander Gorodetskyi , Patrick D. Anderson

DOI: 10.1140/EPJST/E2017-70068-6

关键词: Hyperbolic manifoldPhysicsMeasure (mathematics)Eigenvalues and eigenvectorsMathematical analysisLimit (mathematics)ExponentEigenfunctionHyperbolic setLebesgue measureQuantum mechanics

摘要: Enforcing the results developed by Gorodetskyi et al. [O. Gorodetskyi, M. Giona, P. Anderson, Phys. Fluids 24, 073603 (2012)] on application of mapping matrix formalism to simulate advective-diffusive transport, we investigate structure and properties strange eigenfunctions associated eigenvalues up values Peclet number Pe ~ 𝒪(108). Attention is focused possible occurrence a singular limit for second eigenvalue, ν2, advection-diffusion propagator as number, Pe, tends infinity, corresponding eigenfunction. Prototypical time-periodic flows two-torus are considered, which give rise toral twist maps with different hyperbolic character, encompassing Anosov, pseudo-Anosov, smooth nonuniformly systems possessing set full measure. We show that uniformly systems, dominant decay exponent occurs, log|ν2| → constant≠0 ∞, whereas log |ν2| 0 according power-law in non-uniformly not hyperbolic. The mere presence nonempty nonhyperbolic points (even if zero Lebesgue measure) thus found mark watershed between regular vs. behavior ν2 ∞.

参考文章(38)
Sanjeeva Balasuriya, Dynamical systems techniques for enhancing microfluidic mixing Journal of Micromechanics and Microengineering. ,vol. 25, pp. 094005- ,(2015) , 10.1088/0960-1317/25/9/094005
Andrzej Lasota, Michael C. Mackey, Chaos, Fractals, and Noise Springer New York. ,(1994) , 10.1007/978-1-4612-4286-4
G. Lacorata, A. Celani, M. Cencini, A. Vulpiani, G. Boffetta, Non Asymptotic Properties of Transport and Mixing arXiv: Chaotic Dynamics. ,(1999) , 10.1063/1.166475
Stanislaw M. Ulam, A collection of mathematical problems ,(1960)
G. Boffetta, A. Celani, M. Cencini, G. Lacorata, A. Vulpiani, Nonasymptotic properties of transport and mixing Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 10, pp. 50- 60 ,(2000) , 10.1063/1.166475
O. Gorodetskyi, M.F.M. Speetjens, P.D. Anderson, Simulation and eigenmode analysis of advective-diffusive transport in micro-mixers by the diffusive mapping method Chemical Engineering Science. ,vol. 107, pp. 30- 46 ,(2014) , 10.1016/J.CES.2013.11.045
Roberto Artuso, Correlation decay and return time statistics Physica D: Nonlinear Phenomena. ,vol. 131, pp. 68- 77 ,(1999) , 10.1016/S0167-2789(98)00219-X
M. GIONA, S. CERBELLI, V. VITACOLONNA, Universality and imaginary potentials in advection-diffusion equations in closed flows Journal of Fluid Mechanics. ,vol. 513, pp. 221- 237 ,(2004) , 10.1017/S002211200400984X
S. Cerbelli, M. Giona, A Continuous Archetype of Nonuniform Chaos in Area-Preserving Dynamical Systems Journal of Nonlinear Science. ,vol. 15, pp. 387- 421 ,(2005) , 10.1007/S00332-004-0673-2