Spectral analysis of mixing in chaotic flows via the mapping matrix formalism : inclusion of molecular diffusion and quantitative eigenvalue estimate in the purely convective limit

作者: O. Gorodetskyi , M. Giona , P. D. Anderson

DOI: 10.1063/1.4738598

关键词:

摘要: This paper extends the mapping matrix formalism to include effects of molecular diffusion in analysis mixing processes chaotic flows. The approach followed is Lagrangian, by considering stochastic formulation advection-diffusion via Langevin equation for passive fluid particle motion. In addition, inclusion diffusional permits frame spectral properties matrices purely convective limit a quantitative way. Specifically, coarse graining can be quantified means an effective Peclet number that scales as second power linear lattice size. simple result sufficient predict scaling exponents characterizing behavior eigenvalue spectrum operator flows function number, exclusively from kinematic data, varying grid resolution. Simple but representative model systems and realistic physically realizable are considered under wealth different conditions–from presence large quasi-periodic islands intertwined regions, almost globally conditions, possessing “sticky islands”–providing fairly comprehensive characterization numerical phenomenologies may occur matrices, ultimately processes.

参考文章(54)
Patrick D. Anderson, Han E. H. Meijer, Chaotic mixing analyses by distribution matrices Applied Rheology. ,vol. 10, pp. 119- 133 ,(2000) , 10.1515/ARH-2000-0008
D. Rothstein, E. Henry, J. P. Gollub, Persistent patterns in transient chaotic fluid mixing Nature. ,vol. 401, pp. 770- 772 ,(1999) , 10.1038/44529
A. Sarhangi Fard, M. A. Hulsen, H. E. H. Meijer, N. M. H. Famili, P. D. Anderson, Adaptive non-conformal mesh refinement and extended finite element method for viscous flow inside complex moving geometries International Journal for Numerical Methods in Fluids. ,vol. 68, pp. 1031- 1052 ,(2012) , 10.1002/FLD.2595
Stephen Wiggins, The dynamical systems approach to lagrangian transport in oceanic flows Annual Review of Fluid Mechanics. ,vol. 37, pp. 295- 328 ,(2005) , 10.1146/ANNUREV.FLUID.37.061903.175815
M. GIONA, S. CERBELLI, V. VITACOLONNA, Universality and imaginary potentials in advection-diffusion equations in closed flows Journal of Fluid Mechanics. ,vol. 513, pp. 221- 237 ,(2004) , 10.1017/S002211200400984X
R.S Spencer, R.M Wiley, The mixing of very viscous liquids Journal of Colloid Science. ,vol. 6, pp. 133- 145 ,(1951) , 10.1016/0095-8522(51)90033-5
IstvÁn Scheuring, GyÖrgy KÁrolyi, Áron PÉntek, TamÁs TÉl, ZoltÁn Toroczkai, None, A model for resolving the plankton paradox : coexistence in open flows Freshwater Biology. ,vol. 45, pp. 123- 132 ,(2000) , 10.1046/J.1365-2427.2000.00665.X
R.T. Pierrehumbert, Tracer microstructure in the large-eddy dominated regime Chaos Solitons & Fractals. ,vol. 4, pp. 1091- 1110 ,(1994) , 10.1016/0960-0779(94)90139-2
M. M. Alvarez, J. M. Zalc, T. Shinbrot, P. E. Arratia, F. J. Muzzio, Mechanisms of mixing and creation of structure in laminar stirred tanks AIChE Journal. ,vol. 48, pp. 2135- 2148 ,(2002) , 10.1002/AIC.690481005